Supplementary Information

Proton donor modulating ESIPT-based fluorescent probes for highly sensitive and selective detection of Cu$^{2+}$

Liyan Huang, Biao Gu, Wei Su, Peng Yin, Haitao Li*

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
Fig. S1. 1H NMR spectrum of Pi-A (500 MHz, CDCl$_3$).

Fig. S2. 13C NMR spectrum of Pi-A (126 MHz, CDCl$_3$).
Fig. S3. ESI-MS spectrum of Pi-A.

Fig. S4. 1H NMR spectrum of Pi-E (500 MHz, CDCl$_3$).
Fig. S5. 13C NMR spectrum of Pi-E (126 MHz, CDCl$_3$).

Fig. S6. ESI-MS spectrum of Pi-E.
Fig. S7. Absorption spectra of 10 µM Pi-A (A) and Pi-E (B) in the absence and presence of 10 µM Cu²⁺. Buffer: Tris-HCl (10 mM, pH 7.4), 2% (v/v) DMSO/water.
Fig. S8. (A) Job’s plot of Pi-A and Cu$^{2+}$ ([Pi-A] + [Cu$^{2+}$] = 10 μM) and (B) Job’s plot of Pi-E and Cu$^{2+}$ ([Pi-E] + [Cu$^{2+}$] = 10 μM). Buffer: Tris-HCl (10 mM, pH 7.4), 2% (v/v) DMSO/water.
Fig. S9. ESI-MS spectrum of the reaction products of \(\text{Pi-E} \) with \(\text{Cu}^{2+} \).

Fig. S10. ESI-MS spectrum of compound 2.
Fig. S11. Fluorescence spectra of 10 µM Pi-E (a), 10 µM Pi-E with 10 µM Cu$^{2+}$ (b) and 10 µM compound 2 (c). Conditions: (A) in DMSO/Tris-HCl (v/v = 9:1) solution, $\lambda_{ex}/\lambda_{em} = 296/389$ nm; (B) in DMSO/Tris-HCl (v/v = 1:49) solution at pH 7.4. $\lambda_{ex}/\lambda_{em} = 296/481$ nm.
Figure (A) shows the normalized intensity as a function of wavelength (nm) for different solvents: DCM (red), DMSO (black), and CH$_3$OH (blue). Figure (B) illustrates the normalized intensity for DMSO (black), CH$_3$OH (red), and DCM (blue) with similar wavelength dependence.
Fig. S12. Fluorescence spectra of 10 µM Pi-A (A) or compound 2 (B) in different solvents. Fluorescence spectra of 10 µM Pi-A (C) or compound 2 (D) in DMSO/water mixture of varying water proportions from 0 to 99%. $\lambda_{ex} = 296$ nm.
Fig. S13. Effect of pH on the fluorescence intensity of 10 µM Pi-A (A) and Pi-E (B) in the absence and presence of 10 µM Cu^{2+}. Buffer: 10 mM NaAc-HAc for pH 4.0-6.0 and 10 mM Tris–HCl buffer for pH 7.0-10.0. Conditions: for Pi-A, $\lambda_{\text{ex}}/\lambda_{\text{em}} = 296/455$ nm; for Pi-E, $\lambda_{\text{ex}}/\lambda_{\text{em}} = 296/481$ nm.
Fig. S14. Time–dependent fluorescence intensity of 10 µM Pi-A (A) and Pi-E (B) in the presence of 10 µM Cu²⁺.

Conditions: for Pi-A, λ_{ex}/λ_{em} = 296/455 nm; for Pi-E, λ_{ex}/λ_{em} = 296/481 nm. Buffer: Tris-HCl (10 mM, pH 7.4), 2% (v/v) DMSO/water. T = 25 °C.
Fig. S15. Fluorescence microscope images of living HeLa cells. Cells incubated with PBS (A); 10 µM Pi-A (B); 10 µM Pi-E (C) for 30 min at 37 °C. Top: bright field image, Bottom: fluorescence image.