Supporting information

Self-assembled tubular nanotuctures of tris(8-quinolinolato)gallium(III)

Wanfeng Xie, Fenggong Wang, Jihui Fan, Hui Song, Zongyong Wu, Huimin Yuan, Feng Jiang, Zhiyong Pang, *a and Shenghao Han*ab

*a*School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China.

*b*School of Space Science and Physics, Shandong University, Weihai 264209, P. R. China

*c*Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20910, United States.

Corresponding author: hansh@sdu.edu.cn; pang@sdu.edu.cn

Tel & Fax: +86 531 88365435
Supplemental figures:

Fig. S1 TEM image of Ga₃ sub-microtubes.
Fig. S2 The energy-dispersive spectroscopy (EDS) analysis of Ga₃ tubes, and the inset table is the element contents of Ga₃ sub-microtubes.

<table>
<thead>
<tr>
<th>Element</th>
<th>Wt%</th>
<th>At%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>46.92</td>
<td>57.78</td>
</tr>
<tr>
<td>O</td>
<td>10.19</td>
<td>9.42</td>
</tr>
<tr>
<td>N</td>
<td>28.09</td>
<td>29.66</td>
</tr>
<tr>
<td>Ga</td>
<td>14.81</td>
<td>3.14</td>
</tr>
</tbody>
</table>

Fig. S3 (A) Fourier transform infrared spectroscopy (FTIR) spectrum and (B) powder X-ray diffraction (XRD) pattern of Ga₃ sub-microtubes.
Captions:
Step 1: formation of crystal seeds and aggregation to the regularly hexagonal pad
Step 2: pad growth accompanying by the etching or dissolution at its center
Step 3: gradual formation of Gaq₃ tubes

Fig. S4 Schematic representation for the formation growth process of the Gaq₃ sub-microtubes.

Fig. S5 The SEM image of Gaq₃ irregular solid structures fabricated at 328K.

Fig S6 The SEM image of grown Gaq₃ structures when the concentration of Gaq₃ solution is 45
Fig. S7 The SEM image of grown Ga_3 structures when the concentration of Ga_3 solution is 10 mg/ml.

Fig. S8 The SEM image of grown Ga_3 rods rather than tubes are made in the absence of ethanol when the concentration of Ga_3 solution is 36 mg/ml.