Supporting figures/tables

Figure S1

(a)

Fig. S1 (a) FTIR spectrum of the complete gold nanosensor, Au-TA-DNS; peaks at $\nu_{\text{NH}} = 3219 \text{ cm}^{-1}$, $\nu_{\text{CO}} = 1643 \text{ cm}^{-1}$ corresponds to the stretching vibration of –NH and –C=O respectively.

(b)

FTIR spectrum of metal bound Au-TA-DNS, peaks at ν_{NH} at 3219 cm$^{-1}$ and the red shift of the carbonyl ν_{CO} to 1586 cm$^{-1}$ indicate that the carbonyl O-atom and hydrazine N-atom are the coordination sites.
Figure S2: UV-vis spectra of gold nanosensor Au-TA-DNS at pH~8, pH~4 and 1% NaCl showing stability at various conditions.
Fig S3 Fluorescence spectrum of dansylhydrazine in presence of lead and copper ions. Dansylhydrazine alone did not show any change in fluorescence intensity when metal ions are added.
Figure S4: UV-Vis spectra showing Au-TA-DNS with various concentrations of Cu$^{2+}$ ions.
Figure S5: Image showing straight paper strips assay with Au-TA-DNS and 10ppm of various metal ions. No bluish black color formation was observed with these metal ions indicating the specific selectivity towards Pb(II) and Cu(II).
Table S1

<table>
<thead>
<tr>
<th>CONSTRUCT</th>
<th>Citrate-AuNP</th>
<th>Au-TA</th>
<th>Au-TA-DNS</th>
<th>Au-TA-DNS with Lead(II) Ion</th>
<th>Au-TA-DNS with Copper (II) ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE (nm)</td>
<td>44±0.7</td>
<td>56±3.5</td>
<td>71±1.2</td>
<td>126±4.4</td>
<td>114±3.5</td>
</tr>
<tr>
<td>CHARGE (mV)</td>
<td>-24.4</td>
<td>-31.3</td>
<td>-38.2</td>
<td>-37.0</td>
<td>-28.4</td>
</tr>
</tbody>
</table>

Table S1: Hydrodynamic size and surface charge measurements at different chemical modification steps and after addition of metal ions Pb^{2+} and Cu^{2+}.