Electronic Supplementary Information (ESI)

for

New Thieno[3,2-b][1]benzo thiophene-Based Organic Sensitizers Containing \(\pi \)-Extended Thiophene Spacers for Efficient Dye-Sensitized Solar Cells

Yu Kyung Eom\(^a\), Sung Ho Kang\(^a\), In Taek Choi\(^a\), Eunji Kim\(^b\), Jeongho Kim\(^b\), Myung Jong Ju\(^a\) and Hwan Kyu Kim\(^a\)*

\(^a\)Global GET-Future Lab. & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 339-700, Korea, E-mail: hkk777@korea.ac.kr

\(^b\)Department of Chemistry, Inha University, 100 Inha-ro, Incheon 402-751, Korea

Electronic supplementary information (ESI) available. See DOI:
Figure S1. Dihedral angles, total lengths and π-spacer lengths for all sensitizers.
The oxidation potentials of dyes on TiO$_2$ were measured in CH$_3$CN with 0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF$_6$) as the inert electrolyte, using a three-electrode system (e.g. dye-coated TiO$_2$ film as the working electrode, Pt wire as the counter electrode and Ag/Ag$^+$ as the reference electrode). The potential of the reference electrode was calibrated with Fc/Fc$^+$ as an external reference using E_0 (Fc/Fc$^+$) = 0.63 V vs. NHE.
Figure S3. τ_T (a) and τ_n (b) values derived from IMVS and IMPS of the DSSCs as a function of light intensity, respectively. (c) The η_{cc} values obtained from IMVS and IMPS measurements for the same DSSCs.

To again prove the electron transport and recombination of the SGT sensitizer-based DSSCs, IMVS and IMPS measurements were performed. The electron-transport time (τ_n) or recombination time (τ_r) can be calculated from the expression, τ_n or τ_r = 1/2πf_n or f_r, where f_n or f_r is the characteristic frequency minimum in the Nyquist plots of the IMVS and IMPS results. **Figures S3a and S3b** show the τ_r and τ_n curves as a function of light intensity. The τ_r values from IMVS were in the order of SGT-125 < SGT-121 < SGT-123, which is in agreement with the EIS measurements, which led to the higher V_{oc} of the SGT-123-based DSSC. The τ_r and τ_n values for the SGT-127-based DSSC were incommensurable with those of other sensitisers, owing to the weak light intensity. The η_{cc} results under different light intensities for all DSSCs are displayed in **Figure S3c**, which are also consistent with the η_{cc} values obtained from EIS results.
Figure S4. Cyclic voltammograms obtained with the dye-coated TiO$_2$ electrodes in 0.1 M LiClO$_4$ dissolved in acetonitrile at a scan rate of 50 mV s$^{-1}$ at room temperature.
Figure S5. 1H NMR spectrum of compound 3a in CDCl$_3$.

Figure S6. 1H NMR spectrum of compound 3b in CDCl$_3$.

Figure S7. 1H NMR spectrum of compound 3c in CDCl$_3$

Figure S8. 1H NMR spectrum of compound 4b in CDCl$_3$
Figure S9. 1H NMR spectrum of compound 4c in CDCl$_3$

Figure S10. 1H NMR spectrum of compound 5 in CDCl$_3$
Figure S11. 1H NMR spectrum of SGT-123 in CDCl$_3$

Figure S12. 13C NMR spectrum of SGT-123 in DMSO-d_6
Figure S13. 1H NMR spectrum of SGT-125 in CDCl$_3$

Figure S14. 1H NMR spectrum of SGT-125 in DMSO-d_6
Figure S15. 1H NMR spectrum of SGT-127 in CDCl$_3$

Figure S16. 1H NMR spectrum of SGT-127 in DMSO-d_6
Figure S17. MALDI-TOF spectrum of SGT-123

Figure S18. MALDI-TOF spectrum of SGT-125
Figure S19. MALDI-TOF spectrum of SGT-127