CIELab Chromaticity Evolution to Measure Binding Free Energy of Non-colored Biomolecules to Gold Nanoparticles.

R. Prado-Gotor* a, A. Jimenez-Ruiz a*, J.M. Carnerero a, E. Grueso a, I. Villa a

* Department of Physical Chemistry, University of Seville.
C/Profesor García González, s/n, 41012 Seville (Spain).
pradogotor@us.es, aijimrui@alum.us.es

Supporting Information

Obtention of CIELab parameters

XYZ colorimetric parameters were obtained from experimental measurements by using the following mathematical expressions:

\[X = K \sum_\lambda T_\lambda S_\lambda X_{10(\lambda)} \Delta \lambda \]
\[Y = K \sum_\lambda T_\lambda S_\lambda Y_{10(\lambda)} \Delta \lambda \]
\[Z = K \sum_\lambda T_\lambda S_\lambda Z_{10(\lambda)} \Delta \lambda \]
\[K = \frac{100}{\sum_\lambda S_\lambda Y_{10(\lambda)} \Delta \lambda} \]

where \(T_\lambda \) is the transmittance of the sample; \(S_\lambda \) is a coefficient which depends on both \(\lambda \) and the illuminant (in our case, a D65 illuminant was employed) and \(X_{10(\lambda)}, Y_{10(\lambda)}, Z_{10(\lambda)} \) are functions of both \(\lambda \) and the observer. Conversion from XYZ values to \(L^*a^*b^* \) was done directly by using white point values for the D65 illuminant and 10º observer:\(^2\)

\[X_n = 94.825; \ Y_n = 100; \ Z_n = 107.38 \]

\(L^*a^*b^* \) values were calculated as follows:\(^3\)

\[L^* = 116 \left(\frac{Y}{Y_n} \right)^{1/3} - 16 \]
\[a* = 500[f(X/X_n) - f(Y/Y_n)] \]

\[b* = 200[f(Y/Y_n) - f(Z/Z_n)] \]

where:

\[f(X/X_n) = (X/X_n)^{1/3} \]

\[f(Y/Y_n) = (Y/Y_n)^{1/3} \]

\[f(Z/Z_n) = (Z/Z_n)^{1/3} \]

Figures

Figure S1. Size distribution of synthesized AuNPs.

Figure S2. Wavelength shift (\(\Delta \lambda\)) of the maximum intensity absorbance peak for solutions containing [AuNPs] = 3.2 \times 10^{-10} M and varying concentrations of a) lysine, b) thiourea.
Figure S3. a* and b* parameters for a series of $[\text{AuNPs}] = 3.2 \times 10^{-10}$ M solutions containing a) lysine and b) thiourea. Green-colored points indicate negative values of a* which account for a green tone in the CIELab color system, and are indicative of fully blue (as opposed to purple) nanoparticle solutions.

Figure S4. Two-state model fitting for normalized a* and b* (shown in the inset) parameters of AuNPs/biomolecule solutions. a) $[\text{AuNPs}] = 3.2 \times 10^{-10}$ M; $[\text{Lysine}] = 2.5 \times 10^{-3} - 2 \times 10^{-2}$ M, b) $[\text{AuNPs}] = 3.2 \times 10^{-10}$ M; $[\text{Thiourea}] = 0 - 1 \times 10^{-5}$ M.

Figure S5. Two-state model fit for the red (non-aggregated) deconvolution peak area for a) a series of $\text{AuNPs}/\text{lysine}$ solutions ranging from $[\text{Lysine}] = 2.5 \times 10^{-3} - 2 \times 10^{-2}$ M and b) a series of $\text{AuNPs}/\text{thiourea}$ solutions ranging from $[\text{Thiourea}] = 0 - 1 \times 10^{-5}$ M.
Figure S6. Benesi-Hildebrand fit for the normalized red peak area obtained from deconvolution procedures for a) AuNPs/lysine solutions ranging from [Lysine] = 8.5x10^{-3} to 2x10^{-2} M and b) AuNPs/thiourea solutions ranging from [Thiourea] = 6x10^{-7} to 5x10^{-6} M.

Figure S7. Benesi-Hildebrand fit for a* and b* (shown on inset) for a series of AuNPs solutions ranging from a) [Lysine] = 6x10^{-3} to 9x10^{-3} M and b) [Thiourea] = 5x10^{-7} to 1x10^{-5} M.