Electronic Supplementary Information

Target Induced Aggregation of Modified Au@Ag Nanoparticles for Surface Enhanced Raman Scattering and Its Ultrasensitive Detection of Arsenic (III) in Aqueous Solution

Bo Yang, Xiaochun Chen, Renyong Liu, Bianhua Liu and Changlong Jiang

Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui, 230031, China.

Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China.

State Key Laboratory of Transducer Technology Chinese Academy of Sciences, Hefei, Anhui, 230031, China.

Corresponding Author:

Professor ChangLong Jiang

*E-mail: cljiang@iim.ac.cn

Tel.: +86-551-65591156
Figure S1. All components of the biosensor used in this work. (A) Sequence of Ars-3 aptamer. (B) Chemical structure of poly(diallyldimethylammonium chloride). (C) Chemical structure of 4-mercaptopyridine. (D) Chemical structure of arsenite [As(III)] in aqueous solution.

Figure S2. The SEM images of the 4-MPY-modified Au@AgNPs solutions treated with different substances. (1): 4-MPY-modified Au@AgNPs; (2): 4-MPY-modified Au@AgNPs $+ 5.2 \times 10^{-7}$ g/mL PDDA; (3): 4-MPY-modified Au@AgNPs $+ 11.5$ nM aptamer; (4): 4-MPY-modified Au@AgNPs $+ 11.5$ nM aptamer $+ 5.2 \times 10^{-7}$ g/mL PDDA; (5): sample D+1 ppm As(III); (6): sample D+2 ppm As(III).
Figure S3. Effect of PDDA concentrations on the aggregation of Au@AgNPs. The absorption spectra of the Au@AgNPs solutions treated with increasing concentration of PDDA.

Figure S4. Effect of Ars-3 aptamer concentrations on the aggregation of Au@AgNPs. The concentration of PDDA was 5.2×10^{-7} g/mL.
Figure S5. Effect of the concentration of 4-MPY of the sensing system on the Raman signal intensity in the presence of 5.2×10^{-7} g/mL PDDA and 11.5 nM Ars-3 aptamer. (A) The Raman spectra of the 4-MPY-modified Au@AgNPs solutions treated with increasing concentration of 4-MPY. (B) the responding Raman signal intensity of the 4-MPY-modified Au@AgNPs solutions treated with increasing concentration of 4-MPY.

Figure S6. Effect of the time on the Raman signal intensity. (A) The Raman spectra of the 4-MPY-modified Au@AgNPs solutions treated with different concentration of As(III). (B) the responding Raman signal intensity of the 4-MPY-modified Au@AgNPs solutions against different time.
Calculation of the detection limit. According to the previous report,\(^1\)\(^2\) \(3\sigma/\text{slope}\) was used to determine the detection limit. The following is the detail on how to calculate the detection limit.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raman Intensity</td>
<td>40.745</td>
<td>40.668</td>
<td>40.896</td>
<td>40.158</td>
<td>40.005</td>
<td>40.404</td>
<td>40.419</td>
<td>0.3206</td>
</tr>
</tbody>
</table>

The linear fitting equation at low As(III) concentrations was \(y=58.135+4.019 \times 16.367\times (R=0.998)\), so the slope is 16.367, thus \(3\sigma/\text{slope}\) is calculated as 59.

References
