Supporting Information

Evaluation of Quercetin-Gadolinium Complex as an Efficient Positive Contrast Enhancer for Magnetic Resonance Imaging

Thenmozhi Muthurajan, Pooja Rammanohar, Nisha Palanisamy Rajendran, Swaminathan Sethuraman and Uma Maheswari Krishnan*

Centre for Nanotechnology & Advanced Biomaterials
School of Chemical & Biotechnology
SASTRA University, Thanjavur- 613 401, India

*Corresponding Author

Prof. Uma Maheswari Krishnan Ph. D.
Deakin Indo–Australia Chair Professor
Associate Dean for the Departments of Chemistry, Bioengineering & Pharmacy
Centre for Nanotechnology & Advanced Biomaterials (CeNTAB)
School of Chemical & Biotechnology
SASTRA University, Thanjavur – 613 401
TamilNadu,
India

Ph.: (+91) 4362 264101 Ext: 3677
Fax: (+91) 4362 264120
E–mail: umakrishnan@sastra.edu
Figure S1. The structure of quercetin

Figure S2A. UV-Visible spectra of Q and QGd complex
Figure S2B. FTIR spectrum of quercetin and quercetin-gadolinium complex. Asterisk (*) symbol denotes the wavenumbers corresponding the band shift in Q and QGd complex.

Figure S3. EPR spectrum of quercetin-gadolinium complex
Figure S4A. The Mole-ratio plot for interaction of quercetin with gadolinium(III). The dotted line shows the 1:1 stoichiometry for QGd complex.

Figure S4B. Job’s plot for quercetin and gadolinium(III) from UV spectra varying the proportion of [quercetin + gadolinium(III)] = 1x10^{-2} mol L^{-1} (constant for all measures) in DMSO. The dotted line shows 1:1 stoichiometry for QGd complex.
Figure S5. Stern-Volmer plot for quercetin-gadolinium(III) complex

\[y = 116208x + 1.244 \]
\[R^2 = 0.9464 \]