Supporting Information

Ladder- and bridge-like polynorbornenes with phosphate linkers: facile one-pot synthesis and excellent properties

Liang Ding,*† Junmei Zhang,‡ Lingfang Wang,† Chengshuang Wang†
Experimental Part

Synthesis of 1,4-Bis(10-Undecylcarbonyloxy)-cis-2-Butene (TA)

cis-1,4-Butenediol (1.76 g, 20.0 mmol), undecenoic acid (8.83 g, 48.0 mmol), DMAP (0.60 g, 4.8 mmol), CH₂Cl₂ (65 mL), and THF (15 mL) were charged into a 250 mL round-bottom flask equipped with a magnetic stirrer under nitrogen atmosphere, and the mixture was stirred at 0 ºC for 15 min. EDCI (9.21 g, 48 mmol) was then added to the former solution, and stirred for 3 days after the solution warmed to room temperature. The resulting solution was washed three times with deionized water (3 × 80 mL), and the organic layer was dried over anhydrous Na₂SO₄. Solvent was then evaporated and the crude product was purified by silica gel chromatography eluted with CH₂Cl₂ to give a clear colorless liquid (6.12 g, 72.8% yield). ¹H NMR (CDCl₃): δ (ppm) 5.82–5.73 (m, 4H, CH=CH + CH₂=CH), 5.02–4.96 (m, 4H, CH₂=CH), 4.72 (s, 4H, OOC=CH₂CH=CH), 2.27–2.18 (d, 4H, CH₂CH₂OCO), 2.06–1.92 (d, 4H, CH₂=CHCH₃), 1.69–1.53 (d, 4H, CH₂CH₂OCO), 1.41–1.05 (m, 20H, CH₂(CH₂)₅CH₂).

Synthesis of N-2-Hydroxyl-Ethyl-Norbornene-Dicarboximide (Compound 1)

5-Norbornene-2,3-dicarboxylic anhydride (9.84 g, 60 mmol) and 80 mL of CH₃OH were charged into a 250 mL Schlenk flask. A solution of ethanolamine (3.66 g, 60 mmol) in CH₃OH (20 mL) was then added dropwise to the former solution at 0 ºC. The reaction mixture was allowed to warm to room temperature and stirred at 65 ºC for 24 h. Removal of the solvent and further purified through recrystallization to afford a white crystal with a yield of 76.8% through recrystallization from ethanol. ¹H
NMR (CDCl$_3$): δ (ppm) 6.32–6.26 (s, 2H, $CH=CH$), 3.86–3.72 (m, 4H, NCH$_2$CH$_3$OH), 3.61–3.52 (m, 2H, CHCON), 3.43–3.25 (m, 2H, CHCH$_2$CH), 1.81–1.75 and 1.64–1.49 (d, 2H, CHCH$_2$CH). 13C NMR (CDCl$_3$): δ (ppm) 178.6, 138.5, 62.3, 46.1, 43.5, 37.5, 33.6. LC: single peak was observed. EI/MS: Calcd. for C$_{11}$H$_{13}$O$_3$N: 207.19; Found: 207.17. Anal. Calcd for C: 63.77, H: 6.28, O: 23.19; Found C: 63.79, H: 6.27, O: 23.19.

Synthesis of N-2-Carboxyl-Ethyl-Norbornene-Dicarboximide (Compound 2)

5-Norbornene-2,3-dicarboxylic anhydride (6.56 g, 40 mmol) and 60 mL of CH$_3$OH were charged into a 250 mL Schlenk flask. A solution of 3-aminopropanoic acid (3.56 g, 40 mmol) in CH$_3$OH (10 mL) was then added dropwise to the former solution at 0 °C. The reaction mixture was allowed to warm to room temperature and stirred at 65 °C for 24 h. The resulting solution was filtered off and the filtrate was washed three times with deionized water (3 × 80 mL), and the organic layer was dried over anhydrous Na$_2$SO$_4$. Solvent was then evaporated and the crude product was purified by vacuum distillation to give a yellowish viscous liquid with a yield of 82.5%. 1H NMR (CDCl$_3$): δ (ppm) 6.28–6.23 (s, 2H, $CH=CH$), 3.79–3.64 (m, 4H, NCH$_2$CH$_3$COOH + CHCON), 3.27–3.22 (m, 2H, CHCH$_2$CH), 2.51–2.47 (m, 2H, CH$_2$OCOCH$_2$), 1.61–1.55 and 1.50–1.47 (m, 2H, CHCH$_2$CH). 13C NMR (CDCl$_3$): δ (ppm) 176.2, 175.1, 137.5, 43.9, 37.3, 36.8, 35.0, 33.6. GC: single peak was observed. EI/MS: Calcd. for C$_{12}$H$_{13}$O$_4$N: 235.2375; Found: 235.2369. Anal. Calcd for C: 61.27, H: 5.57, O: 27.20; Found C: 61.26, H: 5.57, O: 27.19.
Fig. S1 (a) 1H NMR and (b) 13C NMR spectra for terminating agent.
Fig. S2 (a) 1H NMR and (b) 13C NMR spectra for compound 1.
Fig. S3 (a) 1H NMR and (b) 13C NMR spectra for compound 2.
Fig. S4 (a) 1H NMR and (b) 13C NMR spectra for M1a.
Fig. S5 (a) 1H NMR and (b) 13C NMR spectra for M1b.
Fig. S6 ATR–IR spectra for (a) M1a and (b) M1b.
Fig. S7 MALLS–GPC traces for ladder-like (a) poly(1a) ([M]: [C] = 10: 1–30: 1) and (b) poly(1b) ([M]: [C] = 10: 1 or 30: 1) prepared using C3 as catalyst at 30 °C.
Fig. S8 MALLS–GPC traces for ladder-like poly(1a) prepared in different reaction conditions (a) C1 as catalyst at 30 or 50 °C and (b) C2 as catalyst at 30 °C.
Fig. S9 13C NMR spectra for (a) double-stranded poly(1a), (b) telechelic double-stranded poly(2a), and (c) bridge-like poly(3a).
Fig. S10 (a) 1H NMR and (b) 13C NMR spectra for double-stranded poly(1b).
Fig. S11 MALLS–GPC traces for ladder-like poly(2b) and bridge-like poly(3b).
Fig. S12 (a) 1H NMR and (b) 13C NMR spectra for telechelic double-stranded poly(2b).
Fig. S13 (a) 1H NMR and (b) 13C NMR spectra for bridge-like poly(3b).