Electronic Supplementary Information

Constructing aligned γ-Fe$_2$O$_3$ nanorods with internal void space anchored on reduced graphene oxide nanosheets for excellent lithium storage

Xiaoliang Wang a, Jawaryia Mujtaba b, Fang Fang b, Mashkoor Ahmad c, Hamidreza Arandiyan d, Hongping Yang b, Guoxing Sun e, Hongyu Sun *b

a Institute of Electrostatic & Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang 050003, China

b Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China

c Nanomaterials Research Group, Physics Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 44000, Pakistan

d ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

e Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

*Corresponding author. E-mail address: hysuny@mail.tsinghua.edu.cn (H. Y. Sun)
Fig. S1 (a) FESEM image, (b-d) TEM, SAED pattern and HRTEM images of the as-prepared precursor.
Fig. S2 XRD pattern of the as-prepared precursor.
Fig. S3 EDX pattern of the γ-Fe_2O_3 IVS-NRs/rGO nanocomposites.
Fig. S4 Raman spectra for the γ-Fe$_2$O$_3$ IVS-NRs/rGO nanocomposites and commercial γ-Fe$_2$O$_3$ nanopowders.
Fig. S5 TEM characterizations of commercial γ-Fe_2O_3 nanoparticles. The particles possess spherical morphology with an average diameter of ~20 nm. EDX result shows that the particles are composed of Fe and O with an atomic ratio of ~2:3. From the HRTEM image, the lattice spacing of d ~3.70 Å is determined, which corresponds to the (210) plane of cubic γ-Fe_2O_3. The diffraction rings of SAED pattern can also be assigned to the planes of γ-Fe_2O_3.
Fig. S6 TG curve of the γ-Fe$_2$O$_3$ IVS-NRs/rGO nanocomposites measured by using TG 2050 thermogravimetric analyzer under an air atmosphere at the temperature range of 25-800 °C with a heating rate of 10 °C min$^{-1}$. The weight loss before 300 °C could be ascribed to surface water adsorption, while the weight loss after ~300 °C could be ascribed to the oxidation of graphene in the nanocomposites, which yielding the weight fraction of rGO in the nanocomposites of about 19.2%.
Fig. S7 Charge/discharge curves of the first cycle for the γ-Fe$_2$O$_3$ IVS-NRs/rGO nanocomposites (blue line) and commercial γ-Fe$_2$O$_3$ nanopowders (black line) electrodes between 0.05 and 3 V versus Li/Li$^+$ at a current density of 0.1 C.
Fig. S8 (a) SEM and (b) TEM images of the γ-Fe$_2$O$_3$ IVS-NRs/rGO nanocomposites electrode after cycling performance testing (50 cycles, current rate 0.1 C, 0.01-3 V versus Li/Li$^+$.)