Supplementary information

Manganese Dioxide Nanoparticles Incorporated within Ionic Liquid Derived Fibrillated Mesoporous Carbon: Electrode Material for High-Performance Supercapacitors

Sayed Habib Kazemi *,a,b, Babak Karimi *,a, Armin Fashi a, Hesam Behzadnia a, Hojjatollah Vali c

a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 (Iran)
b Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
c Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research, McGill University, 3450 University St. Montreal, Quebec, H3A 0C7 (Canada)

E-mail addresses: habibkazemi@iasbs.ac.ir and karimi@iasbs.ac.ir

Contents:

Figure S-1: TEM image of pure IFMC
Figure S-2: XPS plot recorded for IFMC
Figure S-3: Capacitance retention plot
Figure S-1. TEM image of pure IFMC substrate

Figure S-2. X-ray photoelectron spectrum recorded for ionic liquid derived nano-fibrillated mesoporous carbon (IFMC) electrode material (The signals located at about 285, 403, and 535 eV were assigned to C, N, and O, respectively.)
Figure S-3. Relative capacitance retention against charge/discharge cycle number for \(\text{MnO}_2 \)@IFMC supercapacitor.