

Supporting Information

ortho-Alkenylation of anilines with aromatic terminal alkynes over nanosized zeolite beta

Mameda Naresh, a,b Peraka Swamy, a,b Kodumuri Srujana, a Chevella Durgaiah a, Marri Mahender Reddy a and Nama Narender * a,b

a Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
b I&PC Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India Tel.: +91–40–27191703; Fax: +91–40–27160387/27160757;
E-mail: narendern33@yahoo.co.in; nama@iict.res.in

Table of Contents

1. Experimental section .. S2

2. Spectroscopic data of all products ... S3–S6

3. Copies of 1H and 13C NMR spectra of all products .. S7–S22

4. Notes and references .. S22

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015
I. Experimental section

I. General information

All chemicals used were reagent grade and used as received without further purification. All the samples were systematically characterized by different spectroscopic techniques. The XRD patterns of the samples were obtained on a Regaku miniflux X-ray Diffractometer using Ni filtered CuKα radiation at 2θ = 2-80º with a scanning rate of 2º min⁻¹ and the beam voltage and currents of 30 kV and 15 mA, respectively. ¹H NMR spectra were recorded by using Bruker VX NMR FT-300 or Varian Unity 500 and ¹³C NMR spectra were recorded by using Bruker VX NMR FT-75 MHz spectrometers instrument in CDCl₃. The chemical shifts (δ) are reported in ppm units relative to TMS as an internal standard for ¹H NMR and CDCl₃ for ¹³C NMR spectra. Coupling constants (J) are reported in hertz (Hz) and multiplicities are indicated as follows: s (singlet), d (doublet), dd (doublet of doublet), dt (doublet of triplet), t (triplet), m (multiplet). Column chromatography was carried out using silica gel (100-200 mesh).

II. General procedure for the ortho-alkenylation of anilines with aromatic terminal alkynes over nanosized zeolite beta

Aniline (2 mmol), aromatic alkyne (2 mmol) and nanosized zeolite beta (100 mg) were added to 1 mL of toluene in sealed vial and the reaction mixture was allowed to stir at 120 °C for 3 h. Than the reaction mixture was cooled to room temperature, diluted with ethylacetate. The catalyst was separated by filtration and the removal of solvent in vacuo yielded crude residue. The crude residue was further purified by column chromatography using silica gel (100-200 mesh) to afford pure products. All the products were identified on the basis of H¹ and C¹³ NMR spectral data.
2. Spectroscopic data

1-Phenyl-l-(2-aminophenyl)ethylene (3a)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.54 (bs, 2 H), 5.35 (d, $J = 1.34$ Hz, 1 H), 5.79 (d, $J = 1.34$ Hz, 1 H), 6.69 (dd, $J = 1.34$, 7.94 Hz, 1 H), 6.78 (dt, $J = 1.22$, 7.45 Hz, 1 H), 7.10–7.18 (m, 2 H), 7.28–7.33 (m, 3 H), 7.35–7.39 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 115.51, 116.04, 118.24, 126.56, 127.22, 128.01, 128.49, 128.69, 130.74, 139.57, 143.84, 147.08.

1-Phenyl-l-(2-amino-5-methoxyphenyl)ethylene (3b)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.29 (bs, 2 H), 3.75 (s, 3 H), 5.35 (d, $J = 1.37$ Hz, 1 H), 5.80 (d, $J = 1.22$ Hz, 1 H), 6.65 (d, $J = 8.54$ Hz, 1 H), 6.72 (d, $J = 2.89$ Hz, 1 H), 6.77 (dd, $J = 2.89$, 8.54 Hz, 1 H), 7.29–7.33 (m, 3 H), 7.36–7.38 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 55.73, 114.56, 115.69, 116.12, 116.86, 126.58, 128.08, 128.55, 137.56, 139.36, 147.09, 152.46.

1-Phenyl-l-(2-amino-5-methylphenyl)ethylene (3c)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.26 (s, 3 H), 3.48 (bs, 2 H), 5.34 (d, $J = 1.13$ Hz, 1 H), 5.78 (d, $J = 1.13$ Hz, 1 H), 6.62 (d, $J = 7.93$ Hz, 1 H), 6.93 (s, 1 H), 6.97 (dd, $J = 1.51$, 7.93 Hz, 1 H), 7.28–7.39 (m, 5 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 20.35, 115.85, 115.69, 126.58, 127.41, 127.95, 128.47, 129.23, 131.13, 139.70, 141.34, 147.22.

1-Phenyl-l-(2-amino-3-methoxyphenyl)ethylene (3d)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.74 (bs, 2 H), 3.86 (s, 3 H), 5.36 (d, $J = 1.37$ Hz, 1 H), 5.80 (d, $J = 1.37$ Hz, 1 H), 6.69-6.76 (m, 2 H), 6.80 (dd, $J = 1.98$, 7.32 Hz, 1 H), 7.27-7.32 (m, 3 H), 7.36-7.38 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 55.53, 109.37, 115.93, 117.24, 122.84, 126.63, 127.12, 127.95, 128.46, 133.87, 139.60, 146.88, 147.04.

1-Phenyl-l-(2-amino-3-methylphenyl)ethylene (3e)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.17 (s, 3 H), 3.54 (bs, 2 H), 5.35 (d, $J = 1.13$ Hz, 1 H), 5.81 (d, $J = 1.51$ Hz, 1 H), 6.73 (t, $J = 7.36$ Hz, 1 H), 7.00 (d, $J = 6.60$ Hz, 1 H), 7.07 (d, $J = 7.93$ Hz, 1 H), 7.29–7.39 (m, 5 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 17.71, 116.06, 117.78, 122.34, 126.58, 128.01, 128.50, 128.60, 129.84, 139.71, 142.00, 147.35.

1-Phenyl-l-(2-amino-3, 5-dimethylphenyl)ethylene (3f)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.15 (s, 3 H), 2.24 (s, 3 H), 3.41 (bs, 2 H), 5.33 (d, $J = 1.37$ Hz, 1 H), 5.79 (d, $J = 1.37$ Hz, 1 H), 6.81 (s, 1 H), 6.89 (s, 1 H), 7.27-7.32 (m, 3 H), 7.36-7.38 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 17.68, 20.33, 115.93, 126.57, 127.97,
128.47, 128.90, 130.56, 139.43, 147.37. MS (ESI): $m/z = 224$ (M$^+$ + H). Anal.Calcd for C$_{16}$H$_{17}$N C, 86.05; H, 7.67; N, 6.27; Found: C, 86.09; H, 7.61; N, 6.19.

1-Phenyl-l-(2-amino-5-chlorophenyl)ethylene (3g)1

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.54 (bs, 2 H), 5.36 (d, $J = 1.66$ Hz, 1 H), 5.81 (d, $J = 1.22$ Hz, 1 H), 6.60-6.62 (m, 1 H), 7.09-7.11 (m, 2 H), 7.29–7.36 (m, 5 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 116.63, 116.74, 122.79, 126.53, 128.31, 128.49, 128.65, 130.23, 138.88, 142.58, 146.09.

1-Phenyl-l-(2-amino-3-bromophenyl)ethylene (3h)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 4.03 (bs, 2 H), 5.36 (d, $J = 1.32$ Hz, 1 H), 5.83 (d, $J = 1.13$ Hz, 1 H), 6.65 (t, $J = 7.74$ Hz, 1 H), 7.06 (dd, $J = 7.74$ Hz, 1 H), 7.30-7.44 (m, 6 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 109.66, 116.61, 118.58, 126.50, 128.21, 128.29, 128.63, 129.81, 131.97, 138.86, 141.66, 146.66. MS (ESI): $m/z = 274$ (M$^+$ + H). Anal.Calcd for C$_{14}$H$_{12}$BrN C, 61.33; H, 4.41; N, 5.11; Found: C, 61.30; H, 4.40; N, 5.19.

1-Phenyl-l-(2-amino-5-bromophenyl)ethylene (3i)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.55 (bs, 2 H), 5.35 (d, $J = 1.05$ Hz, 1 H), 5.83 (d, $J = 1.13$ Hz, 1 H), 6.57 (d, $J = 9.15$ Hz, 1 H), 7.22-7.25 (m, 2 H), 7.30-7.37 (m, 5 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 109.84, 116.77, 117.02, 126.51, 128.31, 128.64, 129.02, 131.36, 132.99, 138.83, 143.05, 145.98.

1-Phenyl-l-(2-amino-5-nitrophenyl)ethylene (3j)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 4.28 (bs, 2 H), 5.44 (d, $J = 0.91$ Hz, 1 H), 5.90 (d, $J = 0.91$ Hz, 1 H), 6.64 (d, $J = 9.46$ Hz, 1 H), 7.34-7.38 (m, 5 H), 8.06-8.09 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 109.38, 116.07, 117.29, 122.88, 126.69, 128.03, 128.52, 133.90, 139.64, 146.91

1-Phenyl-l-(2-N-methylaminophenyl)ethylene (3m)1

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.71 (s, 3 H), 3.71 (bs, 1 H), 5.33 (d, $J = 1.37$ Hz, 1 H), 5.82 (d, $J = 1.37$ Hz, 1 H), 6.65 (d, $J = 8.24$ Hz, 1 H), 6.74 (td, $J = 1.06$, 7.47 Hz, 1 H), 7.08 (dd, $J = 1.67$, 7.47 Hz, 1 H) 7.24-7.36 (m, 6 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 30.76, 109.93, 116.08, 116.60, 126.50, 128.01, 128.47, 128.9, 130.34, 139.66, 146.60, 147.07.

1-Phenyl-l-(2-amino-l-anthryl)ethylene (3o)1

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.94 (bs, 2 H), 5.29 (s, 1 H), 5.49 (d, $J = 1.46$ Hz, 1 H), 6.33 (d, $J = 1.46$ Hz, 1 H), 7.07 (d, $J = 8.92$ Hz, 1 H), 7.25-7.34 (m, 5 H), 7.42-7.45 (m, 2 H),
7.74-7.77 (m, 1 H) 7.87-7.91 (m, 2 H), 8.08 (s, 1 H), 8.29 (s, 1 H). 1C NMR (75 MHz, CDCl$_3$): δ (ppm) = 116.71, 118.01, 119.86, 121.67, 123.94, 125.18, 126.18, 126.39, 127.65, 127.93, 128.08, 128.64, 129.22, 129.34, 132.11, 132.34, 139.06, 139.86, 144.05.

2-(1-p-tolylvinyl)Aniline (3p)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 2.33 (s, 3 H), 3.55 (bs, 2 H), 5.30 (d, J = 1.52 Hz, 1 H), 5.75 (d, J = 1.52 Hz, 1 H), 6.69 (dd, J = 1.06, 8.08 Hz, 1 H), 6.78 (dt, J = 1.06, 7.32 Hz, 1 H), 7.10-7.17 (m, 4 H), 7.25-7.27 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 21.13, 115.17, 115.49, 118.24, 126.48, 128.48, 128.63, 129.22, 130.74, 136.72, 137.93, 143.88, 146.94. MS (ESI): m/z = 210 (M$^+$ + H). Anal.Calcd for C$_{15}$H$_{15}$N C, 86.08; H, 7.22; N, 6.69; Found: C, 86.07; H, 7.21; N, 6.68.

2-(1-(4-fluorophenyl)vinyl)Aniline (3q)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.55 (bs, 2 H), 5.33 (d, J = 1.06 Hz, 1 H), 5.74 (d, J = 1.06 Hz, 1 H), 6.70 (dd, J = 1.06, 8.08 Hz, 1 H), 6.78 (dt, J = 1.06, 7.32 Hz, 1 H), 7.09 (dd, J = 1.67, 7.62 Hz, 1 H), 7.16 (dt, J = 1.67, 8.08 Hz, 1 H), 7.31-7.35 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 115.38 (J_{CF} = 22.07 Hz), 115.70 (J_{CF} = 19.08 Hz), 118.35, 127.01, 128.30 (J_{CF} = 8.06 Hz), 128.86, 130.68, 135.72, 143.78, 146.07, 162.72 (J_{CF} = 247.94 Hz). MS (ESI): m/z = 214 (M$^+$ + H). Anal.Calcd for C$_{14}$H$_{12}$FN C, 78.85; H, 5.66; N, 6.57; Found: C, 78.86; H, 5.66; N, 6.56.

2-(1-(3-chlorophenyl)vinyl)Aniline (3r)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.55 (bs, 2 H), 5.40 (d, J = 1.22 Hz, 1 H), 5.81 (d, J = 1.21 Hz, 1 H), 6.70 (dd, J = 1.58, 7.58 Hz, 1 H), 6.79 (dt, J = 1.10, 7.45 Hz, 1 H), 7.08 (dd, J = 1.58, 7.58 Hz, 1 H), 7.14-7.20 (m, 1 H), 7.22-7.28 (m, 3 H), 7.35-7.36 (m, 1 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 115.66, 117.27, 118.39, 124.86, 126.62, 128.06, 129.00, 129.75, 130.73, 134.53, 141.64, 143.79, 145.99. MS (ESI): m/z = 230 (M$^+$ + H). Anal.Calcd for C$_{14}$H$_{12}$ClN C, 73.20; H, 5.27; N, 6.10; Found: C, 73.20; H, 5.28; N, 6.09.

2-(1-(4-bromophenyl)vinyl)aniline (3s)

1H NMR (300 MHz, CDCl$_3$): δ (ppm) = 3.56 (bs, 2 H), 5.37 (d, J = 1.22 Hz, 1 H), 5.80 (d, J = 1.21 Hz, 1 H), 6.70 (dd, J = 1.06, 8.08 Hz, 1 H), 6.79 (dt, J = 1.22, 7.47 Hz, 1 H), 7.07 (dd, J = 1.37, 7.47 Hz, 1 H), 7.16-7.18 (m, 1 H), 7.22-7.25 (m, 2 H), 7.41-7.45 (m, 2 H). 13C NMR (75 MHz, CDCl$_3$): δ (ppm) = 115.06, 115.56, 118.38, 122.19, 126.61, 128.23, 128.95, 130.72,
131.62, 138.54, 143.76, 146.07. MS (ESI): $m/z = 274$ (M$^+$ + H). Anal. Calcd for C$_{14}$H$_{12}$BrN: C, 61.33; H, 4.41; N, 5.11; Found: C, 61.32; H, 4.42; N, 5.12.

Figure S1. XRD patterns of nanosized zeolite beta samples: (a) uncalcined; (b) calcined; (c) reused catalyst.
Notes and references