Supporting Information

Synthesis of β-nitrostyrenes in the Presence of Sulfated Zirconia and Secondary Amines

R. González-Olvera, a B. I. Vergara-Arenas, b G. E. Negrón-Silva, a* D. Angeles-Beltrán, a L. Lomas-Romero, b* A. Gutiérrez-Carrillo, b V. H. Lara, b J. A. Morales-Serna. b

a Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Av. San Pablo No. 180, México D.F., C.P. 02200, México. Fax: +52 55 53189000; Tel: +52 55 5318 9593; E-mail: gns@correo.azc.uam.mx (GENS)

b Departamento de Química, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco No.186, México D.F., C.P. 09340, México. Fax: +52 55 58044666; Tel: +52 55 58044913; E-mail: llr@xanum.uam.mx (LLR)

Table of Contents

1. General methods S1
2. Experimental procedures S1
3. Characterization data S5
4. 1H and 13C NMR spectra for compounds 2a-2m S10
5. References S23
1. General methods

Commercially available reagents and solvents were used as received. Column chromatography was performed on Kiesel gel silica gel 60 (230-400 mesh). Melting points were determined using a Fisher-Johns apparatus and are uncorrected. The NMR spectra were obtained using Bruker Ascend-400 (400 MHz) and Bruker Avance DMX-500 (500 MHz) spectrometers. Chemical shifts (δ) are given in ppm and coupling constants J are given in hertz (Hz). Mass spectra (MS) were recorded on a GC-MS (Agilent Technologies 6890N, Detector 5973), in the chemical ionization mode using methane UAP grade as ionization gas. Microwave irradiation experiments were performed using a Discover System (CEM Corporation) single-mode microwave with standard sealed microwave glass vials. The nitrogen adsorption-desorption isotherm of sulfated zirconia was obtained at −196 °C on Micromeritics ASAP 2020 equipment. Powder X-ray diffraction (XRD) was performed using a Philips X’Pert Instrument with Cu-Kα radiation (45kV, 40 mA). Chemical composition of SZ was recorded by an EDX detector on a Zeiss SUPRA VP instrument. All nitrostyrenes 2a-m are known compounds.

2. Experimental procedures

Synthesis and Characterization of Sulfated Zirconia (SZ)
Sulfated zirconia was synthesized according to our previously reported method.1 Figure 1 shows XRD plot corresponding to the crystalline zirconia tetragonal as the predominantly phase which is given by reflections in 2θ = 30.18° as well as peaks in 34.616°, 35.283°, 43.002°, 50.214°, 50.770°, 59.291°, 60.187°, 62.724°, 72.894°, 74.617° and 81.768°. The nitrogen adsorption-desorption isotherm of SZ showed a profile corresponding to type IV of the IUPAC classification, typical for mesoporous materials (Figure 2). The SZ surface area, pore volume, and pore size were 90.75 m²·g⁻¹, 0.12 cm³·g⁻¹, and 52.7 Å, respectively (Table 1). SEM-EDX analysis revealed the presence of sulphur in the zirconia structure, as shown in the emission spectra of Figure 3 and elemental composition (Table 2). Once the sulfated zirconia was recycled is evident the monoclinic phase formation according with the intensification of peak in 2θ = 28° and the peak formation in 2θ = 32° (Figure 4 and 5), even though the sulphur content did not change significantly after the fourth reuse (Table 4).
a) Characterization of synthesised SZ

Figure 1. XRD pattern of synthesized SZ

Figure 2. Nitrogen adsorption-desorption isotherm of synthesised SZ

Table 1. Textural properties of synthesised SZ

<table>
<thead>
<tr>
<th>BET Area (m²/g)</th>
<th>Pore Volume (cm³/g)</th>
<th>Pore Size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.75</td>
<td>0.12</td>
<td>52.73</td>
</tr>
</tbody>
</table>

Table 2. Composition of synthesised SZ

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>11.07</td>
</tr>
<tr>
<td>O</td>
<td>27.31</td>
</tr>
<tr>
<td>S</td>
<td>0.32</td>
</tr>
<tr>
<td>Zr</td>
<td>61.30</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 3. SEM-EDX spectra of synthesised SZ
b) Characterization of recovered SZ

Figure 4. XRD pattern of recovered SZ

Figure 5. Nitrogen adsorption-desorption isotherm of recovered SZ

Table 3. Textural properties of recovered SZ

<table>
<thead>
<tr>
<th>BET Area (m²/g)</th>
<th>Pore Volume (cm³/g)</th>
<th>Pore Size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>86.15</td>
<td>0.089</td>
<td>41.62</td>
</tr>
</tbody>
</table>

Table 4. Composition of recovered SZ

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>23.36</td>
</tr>
<tr>
<td>O</td>
<td>26.71</td>
</tr>
<tr>
<td>S</td>
<td>0.37</td>
</tr>
<tr>
<td>Zr</td>
<td>49.56</td>
</tr>
<tr>
<td>Totals</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 6. SEM-EDX spectra of recovered SZ
Identification of the Brønsted and Lewis acids sites present in synthesised SZ

The quantification of acids sites presents in the material was determined by FT-IR (Nicolet 750 Spectrometer). The sample was passed into thin wafers (10 mg cm\(^{-2}\)) and pre-treated in a quartz cell under vacuum (10\(^{-6}\) mbar) at 450 °C during 4h. Then the sample was cooled at room temperature and expose to pyridine (1 \(\mu\)L) (\(P_{eq} = 2-3\) mbar). The pyridine excess was removed under vacuum (1 h). Finally, the spectra were recorded at 50-400 °C (Figure 7) and the concentration of Brønsted and Lewis acids sites (Table 5) were calculated by the following equation:\(^2\)

\[
n_i = \frac{A_i a_c}{\varepsilon_i \rho m}
\]

\(n_i\) is the amount of type \(i\) acid sites (\(\mu\)mmol g\(^{-1}\))

\(A_i\) is the integrated absorbance in cm\(^{-1}\)

\(a_c\) is the cross-sectional area in square centimeter of the wafer

\(\varepsilon_i\) is the integrated molar extinction coefficient in cm \(\mu\)mmol\(^{-1}\)

\(m\) is the mass of the sample

![Fig. 7 FT-IR spectra of SZ after pyridine desorption at different temperatures: a) dark blue 50 °C, purple 100 °C, turquoise 200 °C, green 300 °C and red 400 °C](image)

Table 5. The nitrogen adsorption–desorption analysis parameters of materials

<table>
<thead>
<tr>
<th>Entry</th>
<th>Parameters</th>
<th>Synthesised SZ</th>
<th>Recovered SZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S_{BET}) (m(^2)·g(^{-1}))</td>
<td>90.75</td>
<td>86.15</td>
</tr>
<tr>
<td>2</td>
<td>Pore volume (cm(^3)·g(^{-1}))</td>
<td>0.12</td>
<td>0.089</td>
</tr>
<tr>
<td>3</td>
<td>Pore size (Å)</td>
<td>52.73</td>
<td>41.62</td>
</tr>
</tbody>
</table>
General procedure for the synthesis of β-nitrostyrenes 2a-m

A mixture of SZ (50 mg) and amine (0.1 mmol, 10 μL) in dry toluene (1mL) was placed in a microwave tube having a magnetic stirrer. Subsequently, aromatic aldehyde (1 mmol) and nitromethane (3 mmol, 0.15 mL) were added to the mixture, which was heated under microwave irradiation (30 W, 110 °C) during 30 minutes. Then, SZ was removed by centrifugation and washed with CH₂Cl₂ (5x5mL). The combined organic extracts were evaporated, giving the corresponding β-nitrostyrene, which was purified by column chromatography (CH₂Cl₂ or hexanes-EtOAc 1:1) and recrystallization (CH₂Cl₂-hexanes, 1:2).

3. Characterization data

(E)-1-methyl-4-(2-nitrovinyl)benzene (2a)

The compound 2a was prepared from 1a (0.1 mL, 1 mmol) and nitromethane (0.15 mL, 3mmol) according to General Procedure. Yield: 137 mg (84%); light yellow solid; mp = 99-101°C (Lit.3 mp=102°C). ¹H NMR (400 MHz, DMSO-d₆): δ = 2.36 (s, 3H, CH₃), 7.29 (d, J = 8.0 Hz, 2H, ArH), 7.74 (d, J = 8.0 Hz, 2H, ArH), 8.08 (d, J = 13.6 Hz, 1H, =CH), 8.17 (d, J = 13.6 Hz, 1H, =CH). ¹³C NMR (100.6 MHz, DMSO-d₆): δ = 21.6 (CH₃), 128.0 (Cipso), 130.28(2xArCH), 130.32 (2xArCH), 137.7 (=CH), 139.8 (=CH), 143.0 (Cipso). MS (Cl) (C₉H₉NO₂): m/z =204 [M+41]+, 192 [M+29]+, 164 [M+1]+, 149, 121.

(E)-1-methoxy-3-(2-nitrovinyl)benzene (2b)

The compound 2b was prepared from 1b (136.15 mg, 1 mmol) and nitromethane (0.15 mL, 3mmol) according to General Procedure. Yield: 150 mg (84%); light yellow solid; mp = 91-95°C (Lit.3 mp=93-94°C). ¹H NMR (500 MHz, DMSO-d₆): δ = 3.81 (s, 3H, OCH₃), 7.08-7.11 (m, 1H, ArH), 7.37-7.42 (m, 2H, ArH), 7.45-7.47 (m, 1H, ArH), 8.09 (d, J = 13.6 Hz, 1H, =CH), 8.26 (d, J = 13.6 Hz, 1H, =CH). ¹³C NMR (125.7 MHz, DMSO-d₆): δ = 55.8 (OCH₃), 114.5 (ArCH), 118.8(ArCH), 123.1 (ArCH), 130.6 (ArCH), 132.1 (Cipso), 138.8 (=CH), 139.6 (=CH), 160.1 (Cipso). MS (Cl) (C₉H₉NO₃): m/z = 220 [M+41]+, 208 [M+29]+, 180 [M+1]+, 165, 152, 137.
(E)-1-methoxy-4-(2-nitrovinyl)benzene (2c)

The compound 2c was prepared from 1c (136.15 mg, 1 mmol) and nitromethane (0.15 mL, 3mmol) according to General Procedure. Yield: 131 mg (73%); light yellow solid; mp = 84-86°C (Lit. mp = 86-87°C). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.83 (s, 3H, OCH₃), 7.05 (d, J = 8.8 Hz, 2H, ArH), 7.83 (d, J = 8.8 Hz, 2H, ArH), 8.09 (d, J = 13.5 Hz, 1H, =CH), 8.13 (d, J = 13.5 Hz, 1H, =CH). ¹³C NMR (100.6 MHz, DMSO-d₆): δ = 56.0 (OCH₃), 115.3 (2xArCH), 123.2 (Cipso), 132.4 (2xArCH), 136.2 (=CH), 139.8 (=CH), 163.0 (Cipso). MS (Cl) (C₉H₉NO₃): m/z = 220 [M+41]⁺, 208 [M+29]⁺, 180 [M+1]⁺, 165, 150, 137.

(E)-1,2-dimethoxy-4-(2-nitrovinyl)benzene (2d)

The compound 2d was prepared from 1d (166.18 mg, 1 mmol) and nitromethane (0.15 mL, 3mmol) according to General Procedure. Yield: 130 mg (62%); yellow solid; mp = 140-142°C (Lit. mp = 140-141°C). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.82 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 7.06 (d, J = 8.3 Hz, 1H, ArH), 7.43 (dd, J = 1.8, 8.3 Hz, 1H, ArH), 7.49 (d, J = 1.8 Hz, 1H, ArH), 8.07 (d, J = 13.5 Hz, 1H, =CH), 8.21 (d, J = 13.5 Hz, 1H, =CH). ¹³C NMR (100.6 MHz, DMSO-d₆): δ = 56.2 (OCH₃), 56.3 (OCH₃), 111.8 (ArCH), 112.2 (ArCH), 123.4 (Cipso), 126.1 (ArCH), 136.4 (=CH), 140.3 (=CH), 149.7 (Cipso), 153.0 (Cipso). MS (Cl) (C₁₀H₁₁NO₄): m/z = 250 [M+41]⁺, 238 [M+29]⁺, 210 [M+1]⁺, 194, 178, 167.

(E)-1,2,3-trimethoxy-5-(2-nitrovinyl)benzene (2e)

The compound 2e was prepared from 1e (196.20 mg, 1 mmol) and nitromethane (0.15 mL, 3mmol) according to General Procedure. Yield: 174 mg (73%), yellow solid; mp = 114-116°C (Lit. mp=120°C). ¹H NMR (400 MHz, DMSO-d₆): δ = 3.73 (s, 3H, OCH₃), 3.83 (s, 6H, OCH₃), 7.24 (s, 2H, ArH), 8.06 (d, J = 13.5 Hz, 1H, =CH), 8.28 (d, J = 13.5, 1H, =CH). ¹³C NMR(100.6 MHz, DMSO-d₆): δ = 56.7 (2xOCH₃), 60.7 (OCH₃), 108.2 (2xArCH), 126.1 (Cipso), 137.9 (=CH), 140.1 (=CH), 149.7 (Cipso), 153.0 (Cipso). MS (Cl) (C₁₀H₁₁NO₄): m/z = 250 [M+41]⁺, 238 [M+29]⁺, 210 [M+1]⁺, 194, 178, 167.
141.5 (C_{ipso}), 153.6 (2xC_{ipso}). MS (Cl) (C₁₁H₁₃NO₅): m/z = 280 [M+41]⁺, 268 [M+29]⁺, 240 [M+1]⁺, 224.

(E)-5-bromo-6-(2-nitrovinyl)benzo[<i>d</i>][1,3]dioxole (2f)

The compound 2f was prepared from 1f (229.03 mg, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 176 mg (65%); light yellow solid; mp = 156-158°C. 1H NMR (400 MHz, DMSO-<i>d</i>₆): δ = 6.19 (s, 2H, OCH₂O), 7.41 (s, 1 H, ArH), 7.67 (s, 1 H, ArH), 8.19 (s, 2H, =CH). 13C NMR (100.6 MHz, DMSO-<i>d</i>₆): δ = 103.6 (OCH₂O), 108.0 (ArCH), 113.6 (ArCH), 120.1 (C_{ipso}), 123.1 (C_{ipso}), 137.2 (=CH), 138.9 (=CH), 148.6 (C_{ipso}), 152.2 (C_{ipso}). MS (Cl) (C₉H₆BrNO₄): m/z = 314, 312 [M+41]⁺, 302, 300 [M+29]⁺, 274, 272 [M+1]⁺, 259, 257, 244, 242, 231, 229, 228, 226, 193, 176, 162.

(E)-1-(2-nitrovinyl)benzene (2g)

The compound 2g was prepared from 1g (0.1 mL, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 104 mg (70%); light yellow solid; mp = 55-57°C (Lit. mp = 56°C). 1H NMR (500 MHz, DMSO-<i>d</i>₆): δ = 7.46-7.50 (m, 2H, ArH), 7.52-7.56 (m, 1H, ArH), 7.84-7.88 (m, 2H, ArH), 8.13 (d, <i>J</i> = 13.6 Hz, 1H, =CH), 8.22 (d, <i>J</i> = 13.6 Hz, 1H, =CH). 13C NMR (125.7 MHz, DMSO-<i>d</i>₆): δ = 129.6 (2xArCH), 130.2 (2xArCH), 130.8 (C_{ipso}), 132.5 (ArCH), 138.5 (=CH), 139.7 (=CH). MS (Cl) (C₈H₇NO₂): m/z = 190 [M+41]⁺, 178 [M+29]⁺, 150 [M+1]⁺, 135, 107.

(E)-1-bromo-2-(2-nitrovinyl)benzene (2h)

The compound 2h was prepared from 1h (0.11 mL, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 192 mg (84%); light yellow solid; mp = 82-84°C (Lit. mp = 86°C). 1H NMR (500 MHz, DMSO-<i>d</i>₆): δ = 7.44-7.51 (m, 2H, ArH), 7.77-7.80 (m, 1H, ArH), 8.00-8.03 (m, 1H, ArH), 8.22 (d, <i>J</i> = 13.5 Hz, 1H, =CH), 8.25 (d, <i>J</i> = 13.5 Hz, 1H, =CH). 13C NMR (125.7 MHz, DMSO-<i>d</i>₆): δ = 125.7 (C_{ipso}), 128.4 (ArCH), 129.5 (ArCH), 129.7 (C_{ipso}), 133.5 (2xArCH), 136.4 (=CH), 140.1 (=CH). MS (Cl) (C₉H₆BrNO₂): m/z = 270, 268 [M+41]⁺, 258, 256 [M+29]⁺, 230, 228 [M+1]⁺, 215, 213, 202, 200, 187, 185, 149, 132.
Supporting Information

(E)-1-bromo-4-(2-nitrovinyl)benzene (2i)

The compound 2i was prepared from 1i (185.02 mg, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 169 mg (74%); yellow solid; mp = 141-143°C (Lit. mp = 148-150°C). 1H NMR (400 MHz, DMSO-d$_6$): δ = 7.70 (d, J = 8.6 Hz, 2H, ArH), 7.82 (d, J = 8.6 Hz, 2H, ArH), 8.12 (d, J = 13.6 Hz, 1H, =CH), 8.26 (d, J = 13.6 Hz, 1H, =CH). 13C NMR (100.6 MHz, DMSO-d$_6$): δ = 126.2 (C$_{ipso}$), 130.1 (C$_{ipso}$), 132.1 (2xArCH), 132.7 (2xArCH), 138.5 (=CH), 139.1 (=CH). MS (Cl) (C$_8$H$_6$BrNO$_2$): m/z = 270, 268 [M+41]$^+$, 258, 256 [M+29]$^+$, 230, 228 [M+1]$^+$, 215, 213, 187, 185, 150.

(E)-1-chloro-4-(2-nitrovinyl)benzene (2j)

The compound 2j was prepared from 1j (140.57 mg, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 150 mg (82%); yellow solid; mp = 111-113°C (Lit. mp = 113-114°C). 1H NMR (500 MHz, DMSO-d$_6$): δ = 7.55 (d, J = 8.5 Hz, 2H, ArH), 7.89 (d, J = 8.4 Hz, 2H, ArH), 8.13 (d, J = 13.6 Hz, 1H, =CH), 8.26 (d, J = 13.6 Hz, 1H, =CH). 13C NMR (125.7 MHz, DMSO-d$_6$): δ = 129.7 (2xArCH), 129.8 (C$_{ipso}$), 131.9 (2xArCH), 137.2 (C$_{ipso}$), 138.4 (=CH), 139.0 (=CH). MS (Cl) (C$_8$H$_6$ClNO$_2$): m/z = 226, 224 [M+41]$^+$, 214, 212 [M+29]$^+$, 186, 184 [M+1]$^+$, 143, 141.

(E)-1-nitro-2-(2-nitrovinyl)benzene (2k)

The compound 2k was prepared from 1k (151.12 mg, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 78 mg (40%); orange solid; mp = 103-105°C (Lit. mp = 103-105°C). 1H NMR (500 MHz, DMSO-d$_6$): δ = 7.78 (td, J = 1.4, 7.9 Hz, 1H, ArH), 7.86 (td, J = 0.8, 7.5 Hz, 1H, ArH), 7.97 (dd, J = 1.4, 7.7 Hz, 1H, ArH), 8.12 (d, J = 13.5, 1H, =CH), 8.20 (dd, J = 1.2, 8.1, 1H, ArH), 8.43 (d, J = 13.5 Hz, 1H, =CH). 13C NMR (125.7 MHz, DMSO-d$_6$): δ = 125.7 (ArCH), 126.2 (C$_{ipso}$), 130.7 (ArCH), 132.7 (ArCH), 134.7 (ArCH), 135.9 (=CH), 140.9 (=CH), 148.9 (C$_{ipso}$). MS (Cl) (C$_8$H$_6$N$_2$O$_4$): m/z = 235 [M+41]$^+$, 223 [M+29]$^+$, 195 [M+1]$^+$, 148, 134, 120, 92.

S8
(E)-1-nitro-4-(2-nitrovinyl)benzene (2l)

The compound 2l was prepared from 1l (151.12 mg, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 138 mg (71%); orange solid; mp = 196-198°C (Lit. mp = 189-192°C). 1H NMR (500 MHz, DMSO-d$_6$): δ = 8.11 (d, $J = 8.9$ Hz, 2H, ArH), 8.23 (d, $J = 13.7$ Hz, 1H, =CH), 8.29 (d, $J = 8.8$ Hz, 2H, ArH), 8.36 (d, $J = 13.7$ Hz, 1H, =CH). 13C NMR (125.7 MHz, DMSO-d$_6$): δ = 124.5 (2xArCH), 131.3 (2xArCH), 137.0 (=CH), 137.3 (C$_{ipso}$), 141.4 (=CH), 149.3 (C$_{ipso}$). MS (CI) (C$_8$H$_6$N$_2$O$_4$): m/z = 235 [M+41]$^+$, 223 [M+29]$^+$, 195 [M+1]$^+$, 165, 152.

(E)-2-(2-nitrovinyl)furan (2m)

The compound 2m was prepared from 1m (0.08 mL, 1 mmol) and nitromethane (0.15 mL, 3 mmol) according to General Procedure. Yield: 122 mg (88%); light yellow solid; mp = 71-73°C (Lit. mp = 72°C). 1H NMR (400 MHz, DMSO-d$_6$): δ = 6.76 (dd, $J = 1.8$, 3.5 Hz, 1H, ArH), 7.29 (d, $J = 3.5$ Hz, 1H, ArH), 7.75 (d, $J = 13.3$ Hz, 1H, =CH), 8.01 (d, $J = 1.3$ Hz, 1H, ArH), 8.02 (d, $J = 13.3$ Hz, 1H, =CH). 13C NMR (100.6 MHz, DMSO-d$_6$): δ = 114.2 (ArCH), 121.6 (ArCH), 126.6 (=CH), 134.9 (=CH), 146.9 (C$_{ipso}$), 148.6 (ArCH). MS (Cl) (C$_6$H$_5$NO$_3$): m/z = 180 [M+41]$^+$, 168 [M+29]$^+$, 140 [M+1]$^+$, 97.

4. 1H and 13C NMR spectra for compounds 2a-2m
Supporting Information

1H NMR and 13C NMR for compound 2a

1H NMR and 13C NMR for compound 2b
Supporting Information

^{1}H NMR and ^{13}C NMR for compound 2c
Supporting Information

\(^1H \) NMR and \(^{13}C \) NMR for compound 2d
1H NMR and 13C NMR for compound 2e
1H NMR and 13C NMR for compound 2f
Supporting Information

\[\text{1H NMR and 13C NMR for compound 2g} \]
Supporting Information

1H NMR and 13C NMR for compound 2h
1H NMR and 13C NMR for compound 2i
Supporting Information

1H NMR and 13C NMR for compound 2j

S18
1H NMR and 13C NMR for compound 2k
1H NMR and 13C NMR for compound 2I
Supporting Information

1H NMR and 13C NMR for compound 2m
5. References
Supporting Information