Supporting Information

Electrospinning-derived ultrafine silver-carbon composite nanofibers for flexible transparent conductive films

Liwen Zhanga, Yejun Qiua,\textdegree, Hong Liub

aShenzhen Engineering Lab of Flexible Transparent Conductive Films, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, University Town, Shenzhen, 518055, China

bSchool of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China

\textdegree Corroponding authors. Tel.: +86-755-26032462; fax: +86-755-26033504. E-mail addresses: yejunqiu@hitsz.edu.cn.
Fig. S1 (a) SEM image and optical photo of silver nanowire with average diameter of about 50 nm and average length of 20 µm; (b) optical photo of dispersive solutions containing Ag/CNFs with different diameter from 30 nm to 500 nm.

Fig. S2 Schematic diagram of TCF fabrication: (a) suction filtration through membrane; (b) PET transfer; (c) treatment in acetone vapor.
Fig. S3 SEM images of Ag/CNFs composite samples fabricated using different conditions: (a) without glucose; (b) with pre-oxidation treatment; (c) with high flow rate of NH$_3$; (d) with weight ratio of 1:1 between AgNO$_3$ and PAN.

Fig. S4 SEM images of Ag/CNFs with different diameter: (a) 30 nm; (b) 200 nm; (c) 500 nm.

Rs=135.9 Ω/sq, T=75.8%Rs=349.2 Ω/sq, T=74.8%Rs=679.6 Ω/sq, T=75.2%

Fig. S5 SEM images of TCFs produced by different deposition orders: (a) deposition
of first AgNWs and then Ag/CNFs; (b) deposition of first Ag/CNFs and then AgNWs; (c) deposition of AgNW and Ag/CNFs mixture. The dash line represents AgNWs buried under Ag/CNFs, and the arrows indicate deformed AgNWs induced by flexibility of AgNWs and large diameter of Ag/CNFs.

![Fig. S6 SEM images](image)

Fig. S6 SEM images: (a) the melting junctions between Ag/CNFs-Ag/CNFs (arrow 1); (b) the interfused cross section between AgNWs-AgNWs (arrow 2) and AgNWs-Ag/CNFs (arrow 3); (c) welding of adjacent AgNWs after high temperature treatment; (d) the crossion in HCl solution with high concentration.

Table S1 Relationship between surface concentration of AgNWs and performance (sheet resistance and transmittance) of TCFs.

<table>
<thead>
<tr>
<th>Surface concentration of AgNWs (mg/m²)</th>
<th>28</th>
<th>33</th>
<th>38</th>
<th>43</th>
<th>48</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet resistance (Ω/sq)</td>
<td>13600.0</td>
<td>1200.0</td>
<td>581.8</td>
<td>232.3</td>
<td>132.7</td>
<td>95.5</td>
</tr>
<tr>
<td>Transmittance at 550 nm (%)</td>
<td>92.5</td>
<td>92.0</td>
<td>91.1</td>
<td>89.2</td>
<td>87.6</td>
<td>85.3</td>
</tr>
</tbody>
</table>