Highly Selective and Efficient Adsorption Dyes Self-assembled by 3D Hierarchical Architecture of Molybdenum Oxide

Min Wang, a Xiao-xiao Song, a Xiao-Li Cheng a, Xin Zhou, b Xian-fa Zhang, a Zhuang Cai, Ying-Ming Xu, a Shan Gao, a Hui Zhao, a Li-Hua Huo*. a

[*] Prof. L. H. Huo
[‡] The first author of theoretical calculation

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China

bInstitute of Theoretical and Simulational Chemistry, Academy of Fundamental and Interdisciplinary Science, Harbin Institute of Technology, Harbin, 150080, People's Republic of China

E-mail address: lhhuo68@yahoo.com

Figure S1 Low-magnification (a) and high-magnification (b) SEM images of the MoO₃ flower-like microspheres calcined at 250 ºC
Figure S2 Nitrogen adsorption-desorption isotherms of nanoflower-like α-MoO$_3$.

Figure S3 Typical SEM image of the commercial α-MoO$_3$.

Figure S4 The correlation between the removal efficiency of RhB and regeneration recycle numbers.
Figure S5 The photographs of MoO$_3$ microspheres before (a) and after (b) adsorption of RhB, and ethanol washed sample (c) after adsorption.

Figure S6 The molecular structure diagrams of the nine adsorbed molecules.
Three important surface structures of α-MoO$_3$, e.g. (010), (100), and (001) crystalline plane, were taken into account in the calculations. Their optimized geometry structures were shown in Figure S8. The three surface structures have identical type and number of atoms and hence should be isomers. The total energies (Figure S8) for the three structures are in the order (010) > (100) > (001) (the relative energies of them is 0 eV, 7.8 eV and 12.25 eV), which is in accordance with their sequence of surface areas.

To clarify which crystalline plane ((010), (100), and (001)) of α-MoO$_3$ has the most strong adsorption ability to organic molecules, C$_6$H$_5$COOH was selected as a test molecule. Taking into account various unsaturated sites on the surfaces of α-MoO$_3$,
we obtained possible adsorption structures for the three surfaces, which were shown in Figure S9 associated with their binding energies. As seen in Figure S9, the adsorption ability of C₆H₅COOH to the surfaces of α-MoO₃ should be in the order (010) < (100) < (001), just opposite to their stability order. It is not surprising that the (010) plane has the weakest adsorption to C₆H₅COOH because the terminal oxygen atoms of (010) surface prohibit the effective interaction between Mo and O atoms of C₆H₅COOH, which is the major contribution to the binding energy. With respect to (100) and (001) plane, although both of them have similar adsorption sites, the short Mo(α-MoO₃)-O(C₆H₅COOH) distance (shown in Figure S9) can be responsible for the strongest adsorption of (001) surface to C₆H₅COOH molecule.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Binding Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(010)-1</td>
<td>-0.0462</td>
</tr>
<tr>
<td>(010)-2</td>
<td>-0.0299</td>
</tr>
<tr>
<td>(100)-1</td>
<td>-0.157</td>
</tr>
<tr>
<td>(100)-2</td>
<td>-0.0578</td>
</tr>
<tr>
<td>(100)-3</td>
<td>-0.701</td>
</tr>
</tbody>
</table>
Figure S9 Adsorption structures of C₆H₅COOH onto (010), (100), and (001) surfaces of α-MoO₃ associated with their binding energies in eV.