Electronic Supplementary Information

One step preparation of quantum dot-embedded lipid nanovesicles by a microfluidic device

A. Zacheo a,b *, A. Quarta b, A. Zizzari a, A. G. Monteduro a,b, G. Maruccio a,b, V. Arima b, and G. Gigli a,b

Table S1 Structure of a) phosphatidylcholines (PC), b) ceramide (Cer), c) cholesterol (Chol) and d) dicetyl phosphate (DCP).

Fig. S1: a) and b) Absorption and emission spectra of green- and orange-emitting QDs, respectively. c) Gel electrophoresis migration of PEG-coated green- and orange-emitting QDs. The left panel refers to the gel picture acquired with the black/white camera of the Gel analyzer, while the right panel with a colored camera. d) and e) TEM images of the green-emitting QDs and of the vesicles embedded with the green-emitting QDs, respectively; f) and g) TEM images of the orange-emitting QDs and of the vesicles embedded with the orange-emitting QDs, respectively.
Table S2 Size distribution of PC vesicles formed at total volumetric flow rate (Q_t) of 37 μl/min and 74 μl/min, for a constant FRR (18:1) and their stability over time (up to 7 days). As expected the vesicles size distribution remain nearly unaffected by the Q_t.

Table S3 Size distribution of vesicle formed with pure PC, PC/Chol/DCP and PC/Chol/Cer at Q_t = 74 μl/min (FRR 18:1), soon after the preparation and after 7 days.

Fig. S2: Size distribution and pdi evolution of PC/Chol/Cer vesicles formed at Q_t 74 μl/min, FRR 18:1, and monitored over 45 days. Experimental results show low polydispersity and high stability during the observation time. Curves were shifted vertically for better graphic representation.
Fig. S3: TEM images of PC/Chol/Cer vesicles. a) vesicles prepared with TOPO-coated QDs dissolved in chloroform: in this experimental condition, QDs were observed outside the vesicles (darker dots); b, c) PC/Chol/Cer vesicles produced with 0.6 µM PEG-modified QDs at b) \(Q_t = 6.33 \, \mu l/min \), and c) \(Q_t = 171 \, \mu l/min \), for a constant FRR =9:1. Nanovesicles exhibit a spherical structure. Electron-dense QDs appear as darker dots in the vesicles.

<table>
<thead>
<tr>
<th></th>
<th>MHD (nm) 0d</th>
<th>pdi 0d</th>
<th>MHD (nm) 3d</th>
<th>pdi 3d</th>
<th>MHD (nm) 7d</th>
<th>pdi 7d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC/Chol/Cer</td>
<td>225±13</td>
<td>0.23±0.01</td>
<td>225±0.56</td>
<td>0.3±0.02</td>
<td>225±47</td>
<td>0.3±0.03</td>
</tr>
<tr>
<td>PC/Chol/Cer/QDs</td>
<td>295±4</td>
<td>0.19±0.02</td>
<td>294±20</td>
<td>0.17±0.01</td>
<td>294±15</td>
<td>0.17±0.02</td>
</tr>
</tbody>
</table>

Table S4 Size distribution and stability of PC/Chol/Cer/QDs vesicles formed at \(Q_t = 57 \, \mu l/ml \) using 0.6 µM QDs concentration. DLS measurements confirmed their stability and low polidispersity up to 7 days.