Supporting Information

Functionalized Boron Nitride Porous Solids

P. M. Sudeep¹,#, S. Vinod²,#, S. Ozden², R. Sruthi², Akos Kukovecz³,⁴, Zoltan Konya³,⁵, Robert Vajtai², M. R. Anantharaman⁶, P. M. Ajayan²,* and Tharangattu N. Narayanan,¹,*

¹TIFR- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad-500075, India.

²Materials Science and NanoEngineering Department, Rice University, Houston, TX, USA

³Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1., Hungary.

⁵MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, H-6720 Szeged, Rerrich Bela ter 1., Hungary.

⁶Department of Physics, Cochin University of Science and Technology, Kochi-682022, Kerala, India.

*Corresponding author tnn@tifrh.res.in or tn_narayanan@yahoo.com , ajayan@rice.edu

These authors are equally contributed.
Experimental Details:
i-hBN was prepared by using an “improved method” reported elsewhere. For the synthesis of i-hBN, 250 mg of h-BN (commercial, Sigma Aldrich) was dispersed in a 9:1 mixture of H_2SO_4:H$_3$PO$_4$ and stirred at 50°C for 2 hrs. 1.5 g of KMnO$_4$ (Sigma Aldrich) was then added to the mixture in parts. Upon addition of KMnO$_4$, the color of the solution changed from white to violet after which the mixture was subjected to continuous stirring overnight. The mixture was then poured over ice and then 10-12 mL H$_2$O$_2$ added which resulted in effervescence and evolution of whitish color. The precipitate was then transferred out; it was washed two times with 200 ml of water, 200 ml of 30wt% HCl and 200 mL ethanol.

Supporting Figures:

Figure S1. XRD pattern of h-BN foam.
Figure S2. XPS Spectrum of (A) pristine h-BN (B) h-BN foam

Figure S3. Contact Angle measurements in pristine h-BN and h-BN foam.