Electronic Supplementary Information

Improving thermo-electrochemical cell performances by constructing Ag-MgO-CNTs nanocomposite electrodes
Weijin Qian,* Mengjie Li, Lihong Chen, Jianghui Zhang, and Changkun Dong*

Institute of Micro-nano Structures & Optoelectronics, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang 325035, China
E-mail: weijinqian@wzu.edu.cn and dck@wzu.edu.cn

Index
SI-1. Pictures and tensile tests of the CNTs electrode with different Mg^{2+} concentration.
SI-2. XPS spectrum of the Ag-MgO-CNTs nanocomposite
SI-3. XPS data on the elemental contents of the CNTs-based nanocomposites
SI-4. Comparison of TEC performances of the CNTs-based nanocomposites electrodes

Reference
SI-1. Pictures and tensile tests of the CNTs electrode with different Mg2+ concentrations.

Fig. S1 (a) Pictures and (b) tensile tests of the CNT electrodes prepared by EPD method with different Mg2+ concentrations. Note: With the increasing concentration of Mg2+, CNTs will become more thicker and too much CNTs is away from the substrate, so it can more easily detach from the substrate by the external force.

We chose the concentration of Mg2+ with the fixed value (0.03g.L-1) due to the following reasons. First, the lower concentration of Mg2+ (<0.03g.L-1) would bring carbon nanotubes (CNTs) to the anode to form the inhomogeneous film on the stainless steel (SS) substrate by EPD method (see Fig. S1a). Second, with the increasing concentration of Mg2+(>0.03g.L-1), the adhesion between the CNT films and the SS substrate would be decreased from 1.25 MPa to 0.84 MPa (see Fig. S1b). In addition, the excessive existence of Mg2+ would decrease the conductivity of the CNTs electrode due to the formation of MgO after the heat treatment.4,5
SI-2. XPS spectrum of the Ag-MgO-CNTs nanocomposite

Fig. S2 Survey XPS spectrum of the Ag-MgO-CNTs-0.01 sample. The anticipated signals from C, Mg and Ag are detected for the composite, in agreement with the EDS results (Fig.2b in the main text). O signal mainly comes from the surface oxidation due to the heat treatment.

SI-3. XPS data on the elemental contents of the CNTs-based nanocomposites

Table S1 XPS data on the elemental contents of the CNTs-based nanocomposites

<table>
<thead>
<tr>
<th>Sample</th>
<th>C (%)</th>
<th>O (%)</th>
<th>Mg (%)</th>
<th>Ag (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-MgO-CNTs-0.002</td>
<td>57.80</td>
<td>33.68</td>
<td>7.92</td>
<td>0.59</td>
</tr>
<tr>
<td>Ag-MgO-CNTs-0.005</td>
<td>40.23</td>
<td>46.84</td>
<td>10.52</td>
<td>2.40</td>
</tr>
<tr>
<td>Ag-MgO-CNTs-0.01</td>
<td>52.32</td>
<td>34.33</td>
<td>9.58</td>
<td>3.77</td>
</tr>
<tr>
<td>Ag-MgO-CNTs-0.02</td>
<td>49.77</td>
<td>36.43</td>
<td>7.66</td>
<td>6.08</td>
</tr>
<tr>
<td>Ag-MgO-CNTs-0.04</td>
<td>61.06</td>
<td>20.14</td>
<td>5.55</td>
<td>13.25</td>
</tr>
</tbody>
</table>

SI-4. Comparison of TEC performances of the CNTs-based nanocomposites electrodes

Table S2. Comparison of TEC performances between this work and previous research of the CNTs-based nanocomposites electrodes

<table>
<thead>
<tr>
<th>Sample</th>
<th>(j_{sc}) (A.m(^{-2}))</th>
<th>(P_{max}) (W.m(^{-2}))</th>
<th>(\eta_r) (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNTs-rGO</td>
<td>Not stated</td>
<td>1.85</td>
<td>2.63</td>
<td>6</td>
</tr>
<tr>
<td>C-ACT*</td>
<td>0.39</td>
<td>0.46*10(^{-3})</td>
<td>0.078</td>
<td>7</td>
</tr>
<tr>
<td>Ag-MgO-CNTs-0.005</td>
<td>18.6</td>
<td>0.34</td>
<td>0.6</td>
<td>this work</td>
</tr>
</tbody>
</table>

*Note: the data of \(\eta_r \) was from the Supplementary Information of this literature.
Reference