Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Spectroscopic Chemical Insights Leading to the Design of Versatile Sustainable Composites for Enhanced Marine Application

Agnieszka S. Dzielendziak^a, James I. R. Blake^a, Richard Bounds^b, Karl A. Wilkinson^b, Marina Carravetta^b, Alan R. Chambers^a, Chris-Kriton Skylaris^b and Robert Raja^{b*}

^aFaculty of Engineering and the Environment, University of Southampton, Highfield, SO17 1BJ, UK. Fax: +44(0)2380597744; Tel: +44(0)2380597772,

^bFaculty of Natural and Environmental Sciences, School of Chemistry, University of Southampton, Highfield, SO17 1BJ UK; E-mail: R.Raja@soton.ac.uk

Electronic Supporting Information

TABLE OF CONTENTS

EPOXIDATION OF LINSEED OIL	PAGE S2
AVERAGE GRAIN SIZE OF THE POWDERED RESIN	PAGE S3
UV CURING THE EPOXIDISED LINSEED OIL BASED RESIN	PAGE S3
RESIN SAMPLE BEFORE AND AFTER HYGROTHERMAL AGEING	PAGE S3
COMPARISON OF GLASS TRANSITION TEMPERATURES OF	
DIFFERENTLY TREATED SAMPLES	PAGE S4
MOLECULAR DYNAMICS SIMULATIONS	PAGE S4
PROPOSED MECHANISM OF ELO POLYMERISATION INITIATION	PAGE S5
PROPOSED MECHANISM OF ELO POLYMERISATION PROPAGATION	PAGE
\$5	

Scheme S1 Chemical structures outlining the degree of epoxidation of linseed oil that can directly influence the curing process

Figure S1 Average grain size of the powdered resin (measured with a Leica M205C microscope)

Figure S2 UV Curing the epoxidised linseed oil based resin

Figure S3 Resin sample after UV curing (left) and after subsequent immersion in distilled water at 40°C for 2 weeks (right). After 2 weeks of immersion samples gradually lost their transparency The ingress of water is suspected to cause the scattering of light.

Table S1 Comparison of glass transition temperatures, Tg, of differently treated samples

Sample	Тg
Reference sample	44°C
Hygrothermally aged 7 weeks (distilled water, 40°C)	43°C
Hygrothermally aged 6 weeks (salty water - 3.5% NaCl)	40°C
Hygrothermally aged 5 weeks (room temperature)	43°C
pH4	44°C
pH10	45°C
UV aged 24h	45°C
UV aged 4 days	46°C
UV aged7 days	43°C

MOLECULAR DYNAMICS SIMULATIONS

Figure S4 Snapshot from the periodic MD simulations of the ELO polymer in water showing water permeation into a periodic slab of ELO monomers. Water molecules that have permeated into the bulk ELO are highlighted. The entire periodic cell is highlighted with a blue box.

Scheme S2 Proposed mechanism of ELO polymerisation initiation

Scheme S3 Proposed mechanism of propagation steps during process of ELO polymerisation

