Electronic Supplementary Information

for

Unexpected efficiency enhancement of flexible dye-sensitized solar cells by repeated outward bending

Xue-Long He, a,b Mei Liu, a Guan-Jun Yang, *,a Baizeng Fang *,c and Chang-Jiu Li a

a State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, PR China.
Tel.: +86-29-82665299, E-mail address: ygj@mail.xjtu.edu.cn (G.J. Yang)
b Jiangxi Province Key Laboratory of Precision Drive and Control, Nanchang 330099, PR China.
c Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada, Email: bfang@chbe.ubc.ca
Figure S1 Typical XRD pattern for the commercial P25 TiO₂.
Figure S3 illustrates a generalized equivalent circuit for a complete DSC, where R_s is the equivalent series resistance, R_{CO} and C_{CO} stand for the resistance and capacitance at the TCO/TiO$_2$ interface, respectively. R_{TCO} and C_{TCO} represent the resistance and capacitance at the exposed TCO/electrolyte interface, respectively. R_t represents the electron transport resistance in the TiO$_2$ film, while R_{ct} stands for the charge transfer resistance at the TiO$_2$/dye/electrolyte interface. C_{μ} represents the capacitance of TiO$_2$ film, and Z_D stands for the Nernst diffusion resistance of the electrolyte. R_{Pt} and C_{Pt} stand for the charge

Figure S2 Photovoltaic performance before bending and after 10000 cycles of bending with a radius of 18 mm.
transfer resistance and electric double layer capacitance at the Pt/electrolyte interface, respectively.

Figure S3 Equivalent circuit for the flexible DSC.