Supporting Information for

Electrohydrodynamic Printing of Poly(3,4ethylenedioxythiophene):poly(4-styrenesulfonate) Electrodes with Ratio-Optimized Surfactant

Sooman Lim^{a,1}, So Hyun Park^{b,1}, Tae Kyu An^c, Hwa Sung Lee^{d,*}, and Se Hyun Kim^{b,*}

^a Department of Chemical Engineering, Sungkyunkwan University, Gyeonggi-do, 440-746 (South Korea)

^b Department of Advanced Organic Materials Engineering, Yeungnam University, Gyeongsan, 712-749 (South Korea).

^c Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju, 380-702 (South Korea).

^d Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 305-719 (South Korea).

* Corresponding Author. Tel.: +82-42-821-1528; fax:+82-42-821-1593 (H. S. Lee) Tel.: +82-53-810-2788; fax: +82-53-810-4686 (S. H. Kim).

E-mail addresses: hlee@hanbat.ac.kr (H. S. Lee), shkim97@yu.ac.kr (S. H. Kim).

¹ Equally contributed as first authors.

Figure S1. Image of poor jetting meniscus hung on the tip of the nozzle for PEDOT:PSS/DMSO (0.2 wt%, left) and PEDOT:PSS/EG (0.2 wt%, right) composite. Simple addition of those additives into PEDOT:PSS could not form a stable cone-jet mode observed from 1 to 4 kV ofapplied voltage.