Mesoporous transition metal dichalcogenide ME_2 ($\text{M} = \text{Mo}, \text{W}; \text{E} = \text{S, Se}$) with 2-D layered crystallinity as anode materials for lithium ion batteries

Yoon Yun Lee,a Gwi Ok Park,b Yun Seok Choi,c Jeong Kuk Shon,*,c Jeongbae Yoon,b Kyoung Ho Kim,c Won-Sub Yoon,*,b Hansu Kim,*,d and Ji Man Kim*,abc

aSKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea

bDepartment of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

cDepartment of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea

dDepartment of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

*Corresponding authors: Prof. Won-Sub. Yoon (wsyoon@skku.edu); Prof. Hansu Kim (khansu@hanyang.ac.kr); Prof. Ji Man Kim (jimankim@skku.edu)

‡ Present address: Energy Lab., Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., P.O. Box 111, Suwon 16678, Republic of Korea
Figure S1. (a) Low angle XRD pattern, (b) N₂-sorption isotherm and pore size distribution curve, (c) SEM image and (d) TEM image of the mesoporous silica KIT-6.
Figure S2. Wide angle XRD patterns of (a) KIT-6 silica template, (b) $\text{H}_3\text{PMo}_{12}\text{O}_{40}\cdot x\text{H}_2\text{O}@\text{KIT-6}$ silica template, (c) mixture of $\text{H}_3\text{PMo}_{12}\text{O}_{40}\cdot x\text{H}_2\text{O}@\text{KIT-6}$ and sulphur powder, and (d) after heating at 160 °C for 12 h of (c).
Figure S3. Raman spectrums of the mesoporous (a) MoS$_2$, (b) MoSe$_2$, (c) WS$_2$ and (d) WSe$_2$.
Figure S4. Wide angle XRD patterns of (a) MoS$_2$ in JCPDS #87-2416, (b) bulk MoS$_2$, (c, d) SEM images and (e, f) TEM images of the bulk MoS$_2$.
Figure S5. Galvanostatic discharge – charge curves at various current rates from 0.1 to 2 C of the mesoporous electrodes, (a) MoS$_2$, (b) MoSe$_2$, (c) WS$_2$ and (d) WSe$_2$.