Electronic supplementary information

Simple and convenient G-quadruplex-based fluorescent assay of micrococcal nuclease activity

Yue He* and Bining Jiao

* To whom correspondence should be addressed. Dr. Yue He, E-mail: yhe@swu.edu.cn, Tel: 86-23-68349603, Fax: 86-23-68349046

*Corresponding author:

aLaboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing, 400712, China.

bNational Citrus Engineering Research Center, Chongqing, 400712, China
Figure S1 Comparison the fluorescence intensity caused by the adding order of MNase and K⁺. (a) d[G₃(T₄G₃)₃] + K⁺ + NMM; (b) d[G₃(T₄G₃)₃] + MNase + K⁺ + NMM; (c) d[G₃(T₄G₃)₃] + K⁺ + MNase + NMM. Concentration: d[G₃(T₄G₃)₃], 2 μM; MNase, 1.2×10⁻³ units/mL; K⁺, 5 mM; NMM, 0.8 μM. Excitation: 399 nm.
Figure S2 Comparison the fluorescence intensity caused by the adding order of MNase and K^+ with increasing concentration of K^+.
Figure S3 Fluorescence emission spectra of G-quadruplex-based biosensor in the presence of increasing amount of MNase in 10% culture medium (A) and fluorescence intensity of G-quadruplex-based biosensor in the presence of different concentration of MNase (inset: calibration curve for MNase detection) in 10% culture medium (B). Excitation: 399 nm.