Supporting Information

Microporous Ag/Carbon Hollow Spheres with High Catalytic Activity Based on Bio-Inspiration Polydopamine Reaction Platform

Qian Zhang, Chen Zhou, and Aisheng Huang *

Institute of New Energy Technology, Ningbo Institute of Material Technology and Engineering, CAS, 1219 Zhongguan Road, 315201 Ningbo, P. R. China.
Fig. S1. Schematic diagram of the apparatus used for the measurement of catalytic performance of the hollow Ag/Carbon towards CO oxidation (C. Zhou, Y. Zhang, L. Hu, H. Yin and W. Wang, *Chem. Eng. Technol.*, 2015, **38**, 291).
Fig. S2. XRD patterns of the Ag/PDA-PMMA spheres (a), and hollow Ag/Carbon spheres (b).
Fig. S3. TEM images of the hollow Ag/Carbon spheres.
Fig. S4. N$_2$ adsorption/desorption (77 K) isotherms of the Ag/PDA-PMMA spheres (a), and hollow Ag/Carbon microporous spheres (b).
Fig. S5. Reaction scheme of the conversion of 4-nitrophenol to 4-aminophenol and corresponding colour change after reaction by using hollow Ag/Carbon spheres as catalyst.
Figure S6

Fig. S6. Conversion of 4-nitrophenol in 2 min versus the number of catalyst recycles.