Electronic supplementary information (ESI)

Synthesis, crystal structure and magnetic properties of the complex [ReCl$_3$(tppz)] · MeCN

J. Palion-Gazda,a I. Gryca,a B. Machura,*a Francesc Lloret,b and Miguel Julve*$_b$

a Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland. E-mail: basia@ich.us.edu.pl

b Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Facultat de Química de la Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain. E-mail: miguel.julve@uv.es

Contents

Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexes.

Figure S1. IR spectrum of 1.

Figure S2. The X-Ray powder diffraction pattern of compound 1 (experimental - black) and the simulation of the powder pattern of 1 from the crystal structure (red).

Figure S3. 1H (a) and 13C NMR (b) spectra of compound 1.

Appendix. Energy levels for a 3T$_1$ term arising from the t_2^4 electronic configuration under a tetragonal ligand-field and spin-orbit coupling.
Table S1. Selected magneto-structural data for six-coordinate rhenium(III) complexesa

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[ReCl3(py)3]</td>
<td>2.367(2)</td>
<td>2.117(8)</td>
<td>mer</td>
<td>c</td>
<td>14b</td>
</tr>
<tr>
<td>[ReCl3(py)3]</td>
<td>2.367(2)</td>
<td>2.120(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReBr3(py)3]</td>
<td>2.513(2)</td>
<td>2.111(10)</td>
<td>mer</td>
<td>c</td>
<td>14b</td>
</tr>
<tr>
<td>[ReBr3(py)3]</td>
<td>2.506(2)</td>
<td>2.122(10)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(Hpz)3]</td>
<td>2.3220(18)</td>
<td>2.133(5)</td>
<td>mer</td>
<td>1.8 BM</td>
<td>14j</td>
</tr>
<tr>
<td>[ReCl3(Hpz)3]</td>
<td>2.3101(18)</td>
<td>2.095(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(Hpz)3]</td>
<td>2.3120(18)</td>
<td>2.093(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(HpZ)3]</td>
<td>2.356(4)</td>
<td>2.13(1)</td>
<td>mer</td>
<td>c</td>
<td>14d</td>
</tr>
<tr>
<td>[ReCl3(HpZ)3]</td>
<td>2.3624(4)</td>
<td>2.13(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(HpZ)3]</td>
<td>2.402(4)</td>
<td>2.12(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(L1Et)]</td>
<td>2.384(3)</td>
<td>2.075(9)</td>
<td>fac</td>
<td>paramagnetic</td>
<td>14h</td>
</tr>
<tr>
<td>[ReCl3(L1Et)]</td>
<td>2.384(3)</td>
<td>2.075(9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(L1Et)]</td>
<td>2.391(4)</td>
<td>2.154(14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(L4Et)]</td>
<td>2.3741(17)</td>
<td>2.078(6)</td>
<td>fac</td>
<td>c</td>
<td>14h</td>
</tr>
<tr>
<td>[ReCl3(L4Et)]</td>
<td>2.3906(16)</td>
<td>2.084(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ReCl3(L4Et)]</td>
<td>2.4040(17)</td>
<td>2.209(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Only six-coordinate Re(III) complexes with a ReN3Cl3 chromophore were considered.

b Abbreviation for the ligands: py = pyridine, Hpz = pyrazole, 3,5-lut = 3,5-dimethylpyridine, L1Et = (2-C5H4NCH2)2NCH2CO2C2H5, L4Et = (2-C5H4NCH2)N(CH3C3H2N2CH2)(CH2CO2C2H5).

c Not measured.
Figure S1. IR spectrum of 1.

Figure S2. X-ray powder diffraction pattern of 1: (black) experimental; (red) simulation of the powder pattern from the crystal structure.
Figure S3. 1H (a) and 13C NMR (b) spectra of compound 1.
Appendix: Energy levels for a $^{3}T_{1}$ term arising from the t_{2}^{4} electronic configuration under a tetragonal ligand-field and spin-orbit coupling

In order to simplify the calculations, we take advantage of the isomorphism between the orbital triplet $^{3}T_{1}$ coming from the t_{2}^{4} electronic configuration and the triplet $L = 1$ from a ^{3}P term (p^{4} electronic configuration). The matrix elements of L within the orbital triplet T_{1} are exactly the same than those contained in the matrix of $(-1)L$ in the associated P state (strong ligand-field approach). So, we can use the $|T_{1}| = -\kappa|P|$ relationship where κ is the orbital reduction factor due to the covalency effects.\(^{19}\) In this respect, the wave-functions for the $^{3}T_{1}$ term are written in the form of $|M_{L}, M_{S}\rangle$ with $M_{L} = 0, \pm 1$ and $M_{S} = 0, \pm 1$. The tetragonal distortion and spin-orbit coupling are treated simultaneously through the Hamiltonian of eqn (1)

$$\hat{H} = -\kappa\lambda \hat{L} \hat{S} + \Delta (\hat{L}_{z}^{2} - 2/3)$$ \hspace{1cm} (1)

where the first term is the spin-orbit coupling, the second one accounts for the orbital distortion of the triplet T_{1} [T_{1} breaks its degeneracy under a C_{4} symmetry group giving an orbital doublet (E) and an orbital singlet (A_{2}) which are separated by an energy gap (Δ)]. κ is the orbital reduction due to covalency.

The secular determinant relevant to the application of the Hamiltonian of eqn (1) may be arranged and factorized in the following sub-determinants:\(^{19}\)

\[
\begin{array}{|c|c|c|}
\hline
& |1, -1\rangle & |-1, 1\rangle \\
\hline
<1, -1| & (\Delta/3\kappa\lambda)\lambda & -\kappa\lambda \\
\hline
<-1, 1| & 0 & (\Delta/3\kappa\lambda)\lambda \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
& |1, 1\rangle & |0, 0\rangle & |-1, -1\rangle \\
\hline
<1, 1| & (\Delta/3\kappa\lambda)\lambda & -\kappa\lambda & 0 \\
\hline
<0, 0| & -\kappa\lambda & -2\Delta/3 - E & -\kappa\lambda \\
\hline
<-1, -1| & 0 & -\kappa\lambda & (\Delta/3\kappa\lambda)\lambda \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
& |1, 0\rangle & |0, -1\rangle & |-1, 0\rangle & |0, 1\rangle \\
\hline
<1, 0| & \Delta/3 - E & -\kappa\lambda & 0 & 0 \\
\hline
\end{array}
\]
The values of the energy levels from these determinants are:

\[E_1 = E_2 = \frac{\Lambda}{3} - \kappa \lambda \]

\[E_3 = E_4 = \frac{1}{2} \left[-\frac{\Lambda}{3} + \left(\Delta^2 + 4\kappa^2 \lambda^2 \right)^{1/2} \right] \]

\[E_5 = E_6 = \frac{1}{2} \left[-\frac{\Lambda}{3} - \left(\Delta^2 + 4\kappa^2 \lambda^2 \right)^{1/2} \right] \]

\[E_7 = \frac{\Lambda}{3} + \kappa \lambda \]

\[E_8 = \frac{1}{2} \left[-\frac{\Lambda}{3} + \kappa \lambda + \left(\Delta^2 + 2\kappa \lambda \Delta + 4\kappa^2 \lambda^2 \right)^{1/2} \right] \]

\[E_9 = \frac{1}{2} \left[-\frac{\Lambda}{3} + \kappa \lambda - \left(\Delta^2 + 2\kappa \lambda \Delta + 4\kappa^2 \lambda^2 \right)^{1/2} \right] \]