The effect of cerium alteration on the photocatalytic performance of WO$_3$ in sunlight exposure for water decontamination

M. Aslam1, M. Tariq Qamar1,2, M. Tahir Soomro1, Iqbal M. I. Ismail1,2, Z. A. Rehan2,3, M. Waqar Ashraf4, A. Hameed1,5*

1Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.

2Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia.

3Centre of Excellence in Desalination Technology (CEDT), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.

4Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia

5National Centre for Physics, Quaid-e-Azam University, Islamabad 44000, Pakistan.

*Corresponding Author:

Abdul Hameed, PhD

Centre of Excellence in Environmental Studies (CEES),
King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

afmuhammad@kau.edu.sa, hameedch@yahoo.com
Fig. S1. The comparison of the UV-visible degradation profiles of 2-NP over pure and 20% Ce⁵⁺ impregnated WO₃ are presented in (a) and (b), whereas that of HPLC degradation profiles of 2-CP on the same catalysts in sunlight exposure are presented in (c) and (d).
Fig. S2. The graphical evaluation of the rates of mineralization of 2-NP (a) and 2-CP (b) in sunlight exposure over pure WO₃, 1%, 5%, 10%, 15%, 20% and 25% Ce³⁺ impregnated WO₃.
Fig. S3. The comparison of the IC profiles for the release of ions during the degradation of 2-NP (a, b, c) and 2-CP (d, e, f) in the presence of pure WO$_3$, 5% and 20% Ce$^{3+}$ impregnated WO$_3$.