Electronic supplementary information for

New Securinega alkaloids with anti-HIV activity from *Fluegga virosa*

Hua Zhang,†,a Chuan-Rui Zhang,†,a Ying-Shan Han,b Mark A. Wainberg,b and Jian-Min Yue∗,a

*aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P. R. China
bMcGill University Aids Centre, The Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada

Table S1. NMR data comparison of alkaloid 3 with virosecurinine and fluggenine A in CDCl3.

Figure S1a. Key 2D NMR correlations for alkaloids 5–8.
Figure S1b. CD spectra for alkaloids 1, 2 and 4–9.

Figure S1. 1H NMR spectrum for flueggenine E (1) in CDCl3.
Figure S2. 13C NMR spectrum for flueggenine E (1) in CDCl3.
Figure S3. 1H–1H COSY spectrum for flueggenine E (1) in CDCl3.
Figure S4. HSQC spectrum for flueggenine E (1) in CDCl3.
Figure S5. HMBC spectrum for flueggenine E (1) in CDCl3.
Figure S6. ROESY spectrum for flueggenine E (1) in CDCl3.
Figure S7. IR spectrum for flueggenine E (1).
Figure S8. (+)-ESIMS spectrum for flueggenine E (1).
Figure S9. (+)-HRESIMS spectrum for flueggenine E (1).

Figure S10. 1H NMR spectrum for flueggenine F (2) in CDCl3.
Figure S11. 13C NMR spectrum for flueggenine F (2) in CDCl3.
Figure S12. 1H–1H COSY spectrum for flueggenine F (2) in CDCl3.
Figure S13. HSQC spectrum for flueggenine F (2) in CDCl3.
Figure S14. HMBC spectrum for flueggenine F (2) in CDCl3.
Figure S15. ROESY spectrum for flueggenine F (2) in CDCl3.
Figure S16. IR spectrum for flueggenine F (2).
Figure S17. (+)-ESIMS spectrum for flueggenine F (2).
Figure S18. (+)-HRESIMS spectrum for flueggenine F (2).

Figure S19. 1H NMR spectrum for flueggenine G (3) in CDCl3.
Figure S20. 13C NMR spectrum for flueggenine G (3) in CDCl3.
Figure S21. 1H–1H COSY spectrum for flueggenine G (3) in CDCl3.

† Equal contribution. ∗Corresponding author. Tel.: 86-21-50806718; E-mail: jmyue@simm.ac.cn
Figure S22. HSQC spectrum for flueggenine G (3) in CDCl₃.
Figure S23. HMBC spectrum for flueggenine G (3) in CDCl₃.
Figure S24. ROESY spectrum for flueggenine G (3) in CDCl₃.
Figure S25. IR spectrum for flueggenine G (3).
Figure S26. EIMS spectrum for flueggenine G (3).
Figure S27. HREIMS spectrum for flueggenine G (3).

Figure S28. ¹H NMR spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S29. ¹³C NMR spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S30. ¹H−¹H COSY spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S31. HSQC spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S32. HMBC spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S33. ROESY spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S34. IR spectrum for flueggenine H (4).
Figure S35. (+)-ESIMS spectrum for flueggenine H (4).
Figure S36. (+)-HRESIMS spectrum for flueggenine H (4).

Figure S37. ¹H NMR spectrum for flueggenine I (5) in CDCl₃.
Figure S38. ¹³C NMR spectrum for flueggenine I (5) in CDCl₃.
Figure S39. ¹H−¹H COSY spectrum for flueggenine I (5) in CDCl₃.
Figure S40. HSQC spectrum for flueggenine I (5) CDCl₃.
Figure S41. HMBC spectrum for flueggenine I (5) in CDCl₃.
Figure S42. ROESY spectrum for flueggenine I (5) in CDCl₃.
Figure S43. IR spectrum for flueggenine I (5).
Figure S44. (+)-ESIMS spectrum for flueggenine I (5).
Figure S45. (+)-HRESIMS spectrum for flueggenine I (5).

Figure S46. ¹H NMR spectrum for fluevirosine E (6) in CDCl₃.
Figure S47. ¹³C NMR spectrum for fluegenine E (6) in CDCl₃.
Figure S48. ¹H−¹H COSY spectrum for fluegenine E (6) in CDCl₃.
Figure S49. HSQC spectrum for fluegenine E (6) CDCl₃.
Figure S50. HMBC spectrum for fluegenine E (6) in CDCl₃.
Figure S51. ROESY spectrum for fluegenine E (6) in CDCl₃.
Figure S52. IR spectrum for fluegenine E (6).
Figure S53. (+)-ESIMS spectrum for fluegenine E (6).
Figure S54. (+)-HRESIMS spectrum for fluegenine E (6).

Figure S55. ¹H NMR spectrum for fluevirosine F (7) in CDCl₃.
Figure S56. ¹³C NMR spectrum for fluegenine F (7) in CDCl₃.
Figure S57. ¹H−¹H COSY spectrum for fluegenine F (7) in CDCl₃.
Figure S58. HSQC spectrum for fluegenine F (7) CDCl₃.
Figure S59. HMBC spectrum for fluegenine F (7) in CDCl₃.
Figure S60. ROESY spectrum for fluegenine F (7) in CDCl₃.
Figure S61. IR spectrum for fluegenine F (7).
Figure S62. (+)-ESIMS spectrum for fluegenine F (7).
Figure S63. (+)-HRESIMS spectrum for fluegenine F (7).
Figure S64. 1H NMR spectrum for fluevirosine G (8) in CDCl$_3$.
Figure S65. 13C NMR spectrum for flueggenine G (8) in CDCl$_3$.
Figure S66. 1H–1H COSY spectrum for flueggenine G (8) in CDCl$_3$.
Figure S67. HSQC spectrum for flueggenine G (8) CDCl$_3$.
Figure S68. HMBC spectrum for flueggenine G (8) in CDCl$_3$.
Figure S69. ROESY spectrum for flueggenine G (8) in CDCl$_3$.
Figure S70. IR spectrum for flueggenine G (8).
Figure S71. (+)-ESIMS spectrum for flueggenine G (8).
Figure S72. (+)-HRESIMS spectrum for flueggenine G (8).

Figure S73. 1H NMR spectrum for fluevirosine H (9) in CDCl$_3$.
Figure S74. 13C NMR spectrum for flueggenine H (9) in CDCl$_3$.
Figure S75. 1H–1H COSY spectrum for flueggenine H (9) in CDCl$_3$.
Figure S76. HSQC spectrum for flueggenine H (9) CDCl$_3$.
Figure S77. HMBC spectrum for flueggenine H (9) in CDCl$_3$.
Figure S78. ROESY spectrum for flueggenine H (9) in CDCl$_3$.
Figure S79. IR spectrum for flueggenine H (9).
Figure S80. (+)-ESIMS spectrum for flueggenine H (9).
Figure S81. (+)-HRESIMS spectrum for flueggenine H (9).
Table S1. NMR data comparison of alkaloid 3 with virosecurinine and fluggenine A in CDCl₃.

<table>
<thead>
<tr>
<th>No.</th>
<th>3</th>
<th>Virosecurinine<sup>a</sup></th>
<th>fluggenine A<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ<sub>C</sub></td>
<td>δ<sub>H</sub> (multi., J in Hz)</td>
<td>δ<sub>C</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ<sub>C</sub></td>
</tr>
<tr>
<td>2</td>
<td>63.2</td>
<td>2.04 (dd, 11.3, 2.6)</td>
<td>63.0</td>
</tr>
<tr>
<td>3</td>
<td>27.0</td>
<td>a 1.67 (m)</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.57 (m)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>24.3</td>
<td>a 1.88 (m)</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.22 (m)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>25.6</td>
<td>1.56–1.64 (m, 2H)</td>
<td>25.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.65–1.48 (m)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>48.9</td>
<td>a 2.99 (m)</td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 2.41 (m)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58.5</td>
<td>3.85 (dd, 5.6, 4.1)</td>
<td>58.8</td>
</tr>
<tr>
<td>8</td>
<td>42.2</td>
<td>a 2.50 (dd, 9.1, 4.1)</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.72 (d, 9.1)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>89.7</td>
<td></td>
<td>89.5</td>
</tr>
<tr>
<td>10</td>
<td>173.2</td>
<td></td>
<td>173.7</td>
</tr>
<tr>
<td>11</td>
<td>103.6</td>
<td>5.56 (s)</td>
<td>105.1</td>
</tr>
<tr>
<td>12</td>
<td>171.8</td>
<td></td>
<td>170.1</td>
</tr>
<tr>
<td>13</td>
<td>134.7</td>
<td></td>
<td>121.4</td>
</tr>
<tr>
<td>14</td>
<td>135.4</td>
<td>6.67 (d, 5.6)</td>
<td>140.2</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2′</td>
<td>67.0</td>
<td>3.10 (dd, 8.7, 7.0)</td>
<td>66.7</td>
</tr>
<tr>
<td>3′</td>
<td>29.0<sup>c</sup></td>
<td>a 1.92 (m)</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.79 (m)</td>
<td></td>
</tr>
<tr>
<td>4′</td>
<td>26.6</td>
<td>a 1.96 (m)</td>
<td>26.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.63 (m)</td>
<td></td>
</tr>
<tr>
<td>5′</td>
<td>57.5</td>
<td>a 3.22 (m)</td>
<td>57.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 2.60 (m)</td>
<td></td>
</tr>
<tr>
<td>7′</td>
<td>65.0</td>
<td>3.01 (m)</td>
<td>64.3</td>
</tr>
<tr>
<td>8′</td>
<td>35.8</td>
<td>a 2.59 (m)</td>
<td>35.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b 1.49 (d, 11.0)</td>
<td></td>
</tr>
<tr>
<td>9′</td>
<td>91.9</td>
<td></td>
<td>91.7</td>
</tr>
<tr>
<td>11′</td>
<td>172.6</td>
<td></td>
<td>172.6</td>
</tr>
<tr>
<td>12′</td>
<td>110.2</td>
<td>5.67 (d, 2.1)</td>
<td>110.4</td>
</tr>
<tr>
<td>13′</td>
<td>172.8</td>
<td></td>
<td>172.2</td>
</tr>
<tr>
<td>14′</td>
<td>29.1<sup>c</sup></td>
<td>α 2.97 (m)</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>β 2.66 (ddd, 15.0, 11.8, 2.1)</td>
<td></td>
</tr>
<tr>
<td>15′</td>
<td>42.9</td>
<td>2.53 (m)</td>
<td>42.8</td>
</tr>
</tbody>
</table>

^c Interchangeable assignments.
Figure Sa. Key 2D NMR correlations for alkaloids 5–8.
Figure Sb. CD spectra for alkaloids 1, 2 and 4–9.
Figure S1. 1H NMR spectrum for flueggenine E (1) in CDCl$_3$.
Figure S2. 13C NMR spectrum for fluegenine E (1) in CDCl$_3$.
Figure S3. 1H–1H COSY spectrum for fluegenine E (1) in CDCl$_3$.
Figure S4. HSQC spectrum for flueggenine E (1) in CDCl$_3$.
Figure S5. HMBC spectrum for flueggenine E (1) in CDCl₃.
Figure S6. ROESY spectrum for flueggenine E (1) in CDCl₃.
Figure S7. IR spectrum for flueggenine E (1).
Figure S8. (+)-ESIMS spectrum for flueggenine E (1).
Figure S9. (+)-HRESIMS spectrum for flueggenine E (1).

Elemental Composition Report

Single Mass Analysis
Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron ions
266 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 6-80 H: 2-120 N: 0-3 O: 0-20

G565L_0023.10 (0.185) AMZ (Ar: 10000, 0.00, 1.00); ABS; CM (S.26)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>379.2193</td>
<td>379.2192</td>
<td>1.1</td>
<td>2.9</td>
<td>11.5</td>
<td>57.4</td>
<td>0.0</td>
<td>C23 H28 N3 O2</td>
</tr>
</tbody>
</table>

m/z

Minimum:
Maximum:
Figure S10. 1H NMR spectrum for flueggenine F (2) in CDCl$_3$.
Figure S11. 13C NMR spectrum for flueggenine F (2) in CDCl$_3$.
Figure S12. 1H–1H COSY spectrum for flueggenine F (2) in CDCl$_3$.
Figure S13. HSQC spectrum for flueggonine F (2) in CDCl₃.
Figure S14. HMBC spectrum for fluegenine F (2) in CDCl$_3$.
Figure S15. ROESY spectrum for flueggenine F (2) in CDCl₃.
Figure S16. IR spectrum for fluggenine F (2).
Figure S17. (+)-ESIMS spectrum for fluggenine F (2).
Figure S18. (+)-HRESIMS spectrum for flueggenine F (2).
Figure S19. 1H NMR spectrum for flueggenine G (3) in CDCl$_3$.
Figure S20. 13C NMR spectrum for flueggenine G (3) in CDCl$_3$.
Figure S21. 1H–1H COSY spectrum for flueggenine G (3) in CDCl$_3$.
Figure S22. HSQC spectrum for flueggenine G (3) in CDCl₃.
Figure S23. HMBC spectrum for flueggenine G (3) in CDCl₃.
Figure S24. ROESY spectrum for flueggenine G (3) in CDCl₃
Figure S25. IR spectrum for fluggenine G (3).
Figure S26. EIMS spectrum for flueggenine G (3).
Figure S27. HREIMS spectrum for flueggenine G (3).

<table>
<thead>
<tr>
<th>Mass</th>
<th>Intensity</th>
<th>%RA</th>
<th>%RIC</th>
<th>Delta</th>
<th>R+D</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.0586</td>
<td>37711</td>
<td>0.15</td>
<td>-0.2</td>
<td>1.5</td>
<td>C4.H8.N</td>
<td></td>
</tr>
<tr>
<td>71.0859</td>
<td>12883</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td>C5.H11</td>
<td></td>
</tr>
<tr>
<td>77.0390</td>
<td>9041</td>
<td>0.04</td>
<td>-0.8</td>
<td>4.5</td>
<td>C6.H5</td>
<td></td>
</tr>
<tr>
<td>78.0479</td>
<td>9455</td>
<td>0.04</td>
<td>-1.0</td>
<td>4.0</td>
<td>C6.H6</td>
<td></td>
</tr>
<tr>
<td>82.0652</td>
<td>19679</td>
<td>0.08</td>
<td>0.4</td>
<td>2.5</td>
<td>C5.H8.N</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.3</td>
<td>-2.0</td>
<td>C2.H10.O3</td>
</tr>
<tr>
<td>83.0725</td>
<td>12469</td>
<td>0.05</td>
<td>0.9</td>
<td>2.0</td>
<td>C5.H9.N</td>
<td></td>
</tr>
<tr>
<td>85.0856</td>
<td>9219</td>
<td>0.04</td>
<td>0.5</td>
<td>1.5</td>
<td>C6.H11</td>
<td></td>
</tr>
<tr>
<td>84.0808</td>
<td>237627</td>
<td>0.04</td>
<td>0.5</td>
<td>1.5</td>
<td>C5.H10.N</td>
<td></td>
</tr>
<tr>
<td>85.0845</td>
<td>9041</td>
<td>0.04</td>
<td>0.5</td>
<td>1.5</td>
<td>C6.H11</td>
<td></td>
</tr>
<tr>
<td>91.0543</td>
<td>8037</td>
<td>0.03</td>
<td>0.4</td>
<td>4.5</td>
<td>C7.H7</td>
<td></td>
</tr>
<tr>
<td>96.0817</td>
<td>40126</td>
<td>0.17</td>
<td>-0.4</td>
<td>2.5</td>
<td>C6.H10.N</td>
<td></td>
</tr>
<tr>
<td>106.0397</td>
<td>9100</td>
<td>0.04</td>
<td>-1.9</td>
<td>1.0</td>
<td>C2.H6.N2.O3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11582</td>
<td>0.05</td>
<td>-1.1</td>
<td>-0.5</td>
<td>C4.H11.O3</td>
<td></td>
</tr>
<tr>
<td>115.0545</td>
<td>9573</td>
<td>0.04</td>
<td>0.3</td>
<td>6.5</td>
<td>C9.H7</td>
<td></td>
</tr>
<tr>
<td>146.0970</td>
<td>8056</td>
<td>0.03</td>
<td>0.0</td>
<td>5.5</td>
<td>C10.H12.N</td>
<td></td>
</tr>
<tr>
<td>147.1043</td>
<td>7741</td>
<td>0.03</td>
<td>0.5</td>
<td>5.0</td>
<td>C10.H13.N</td>
<td></td>
</tr>
<tr>
<td>149.0231</td>
<td>21452</td>
<td>0.09</td>
<td>0.8</td>
<td>6.5</td>
<td>C8.H5.O3</td>
<td></td>
</tr>
<tr>
<td>162.0912</td>
<td>7446</td>
<td>0.03</td>
<td>0.7</td>
<td>5.5</td>
<td>C10.H12.N.O</td>
<td></td>
</tr>
<tr>
<td>190.0874</td>
<td>26593</td>
<td>0.11</td>
<td>-0.6</td>
<td>6.5</td>
<td>C11.H12.N.O2</td>
<td></td>
</tr>
<tr>
<td>191.0949</td>
<td>85985</td>
<td>0.36</td>
<td>-0.3</td>
<td>6.0</td>
<td>C11.H13.N.O2</td>
<td></td>
</tr>
<tr>
<td>192.0991</td>
<td>8982</td>
<td>0.04</td>
<td>0.6</td>
<td>1.0</td>
<td>C8.H16.O5</td>
<td></td>
</tr>
<tr>
<td>230.1187</td>
<td>11110</td>
<td>0.05</td>
<td>-0.6</td>
<td>7.5</td>
<td>C14.H16.N.O2</td>
<td></td>
</tr>
<tr>
<td>258.9797</td>
<td>11346</td>
<td>0.05</td>
<td>0.0</td>
<td>5.5</td>
<td>C10.H12.N.O</td>
<td></td>
</tr>
<tr>
<td>308.9754</td>
<td>11760</td>
<td>0.05</td>
<td>0.0</td>
<td>5.5</td>
<td>C10.H12.N.O</td>
<td></td>
</tr>
<tr>
<td>336.1247</td>
<td>19679</td>
<td>0.08</td>
<td>-1.2</td>
<td>12.5</td>
<td>C20.H18.N.O4</td>
<td></td>
</tr>
<tr>
<td>337.1310</td>
<td>45858</td>
<td>0.19</td>
<td>0.5</td>
<td>12.0</td>
<td>C20.H19.N.O4</td>
<td></td>
</tr>
<tr>
<td>338.1350</td>
<td>18851</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>358.9720</td>
<td>11110</td>
<td>0.05</td>
<td>0.0</td>
<td>5.5</td>
<td>C10.H12.N.O</td>
<td></td>
</tr>
<tr>
<td>359.9829</td>
<td>7446</td>
<td>0.03</td>
<td>1.9</td>
<td>27.0</td>
<td>C26.O3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8037</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405.9769</td>
<td>12114</td>
<td>0.05</td>
<td>-2.2</td>
<td>27.5</td>
<td>C26.N.O5</td>
<td></td>
</tr>
<tr>
<td>420.2049</td>
<td>27716</td>
<td>0.11</td>
<td>0.0</td>
<td>13.0</td>
<td>C25.H28.N2.O4</td>
<td></td>
</tr>
<tr>
<td>420.9689</td>
<td>8273</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S28. 1H NMR spectrum for flueggenine H (4) in CDCl$_3$ (5% CD$_3$OD).
Figure S29. 13C NMR spectrum for flueggenine H (4) in CDCl$_3$ (5% CD$_3$OD).
Figure S30. $^1\text{H}^-^1\text{H}$ COSY spectrum for flueggenine H (4) in CDCl$_3$ (5% CD$_3$OD).
Figure S31. HSQC spectrum for flueggenine H (4) in CDCl$_3$ (5% CD$_3$OD).
Figure S32. HMBC spectrum for flueggenine H (4) in CDCl₃ (5% CD₃OD).
Figure S33. ROESY spectrum for flueggenine H (4) in CDCl$_3$ (5% CD$_3$OD).
Figure S34. IR spectrum for fluegenine H (4).
Figure S35. (+)-ESIMS spectrum for flueggenine H (4).
Figure S36. (+)-HRESIMS spectrum for flueggenine H (4).
Figure S37. 1H NMR spectrum for flueggenine I (5) in CDCl$_3$.
Figure S38. 13C NMR spectrum for flueggenine I (5) in CDC$_3$.
Figure S39. 1H–1H COSY spectrum for flueggenine I (5) in CDCl$_3$.
Figure S40. HSQC spectrum for flueggenine I (5) CDCl₃.
Figure S41. HMBC spectrum for flueggenine I (5) in CDCl$_3$.
Figure S42. ROESY spectrum for flueggenine I (5) in CDCl₃.
Figure S43. IR spectrum for flueggenine I (5).
Figure S44. (+)-ESIMS spectrum for flueggenine I (5).
Figure S45. (+)-HRESIMS spectrum for flueggenine I (5).

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions
403 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
- C: 5-80
- H: 2-120
- N: 0-4
- O: 0-20

LCT PXE KE324

G4el_0927 27 (0.583) AM2 (Ar,10000,0.00,1.00), ABS, Cm (11.27)

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Name</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>439.2218</td>
<td>439.2233</td>
<td>-1.5</td>
<td>-3.4</td>
<td>11.5</td>
<td>81.6</td>
<td>0.0</td>
<td>C25 H31 N2 O5</td>
</tr>
</tbody>
</table>
Figure S46. 1H NMR spectrum for fluevirosine E (6) in CDCl$_3$.
Figure S47. 13C NMR spectrum for fluggenine E (6) in CDCl$_3$.
Figure S48. 1H–1H COSY spectrum for flueggenine E (6) in CDCl$_3$.
Figure S49. HSQC spectrum for flueggenine E (6) CDCl₃.
Figure S50. HMBC spectrum for flueggenine E (6) in CDCl₃.
Figure S51. ROESY spectrum for flueggenine E (6) in CDCl₃.
Figure S52. IR spectrum for flueggenine E (6).
Figure S53. (+)-ESIMS spectrum for flueggenine E (6).
Figure S54. (+)-HRESIMS spectrum for flueggenine E (6).

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0

Element prediction: Off

Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

793 formula(s) evaluated with 3 results within limits (up to 50 closest results for each mass)

Elements Used:

<table>
<thead>
<tr>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-80</td>
<td>2-120</td>
<td>0-5</td>
<td>0-20</td>
</tr>
</tbody>
</table>

G4giB LCT PXE KE324 13-Sep-2013 15:18:06
G4giB_0913 27 (0.555) AM2 (Av,10000.0,0.0,0.0,1.00); ABSS; Cm (26:42) 1:TOF MS ES+

| 1.71×10⁴ |

<table>
<thead>
<tr>
<th>Mass</th>
<th>Calc. Mass</th>
<th>mDa</th>
<th>PPM</th>
<th>DBE</th>
<th>i-FIT</th>
<th>i-FIT (Norm)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>642.3173</td>
<td>642.3179</td>
<td>-0.6</td>
<td>-0.9</td>
<td>17.5</td>
<td>74.1</td>
<td>0.0</td>
<td>C37 H44 N3 O7</td>
</tr>
<tr>
<td>642.3184</td>
<td>-1.1</td>
<td>-1.7</td>
<td>-0.5</td>
<td>83.0</td>
<td>8.9</td>
<td>C24 H52 N O18</td>
<td></td>
</tr>
<tr>
<td>642.3181</td>
<td>1.2</td>
<td>1.9</td>
<td>30.5</td>
<td>93.3</td>
<td>9.2</td>
<td>C49 H40 N</td>
<td></td>
</tr>
</tbody>
</table>
Figure S55. 1H NMR spectrum for fluevirosine F (7) in CDCl$_3$.
Figure S56. 13C NMR spectrum for flueggenine F (7) in CDCl$_3$.
Figure S57. 1H–1H COSY spectrum for flueggenine F (7) in CDCl$_3$.
Figure S58. HSQC spectrum for flueggenine F (7) CDCl₃.
Figure S59. HMBC spectrum for flueggenine F (7) in CDCl₃.
Figure S60. ROESY spectrum for flueggenine F (7) in CDCl₃.
Figure S61. IR spectrum for flueggenine F (7).
Figure S62. (+)-ESIMS spectrum for fluegenine F (7).
Figure S63. (+)-HRESIMS spectrum for flueggenine F (7).
Figure S64. 1H NMR spectrum for fluevirosine G (8) in CDCl$_3$.
Figure S65. 13C NMR spectrum for flueggenine G (8) in CDCl$_3$.
Figure S66. 1H−1H COSY spectrum for flueggenine G (8) in CDCl$_3$.
Figure S67. HSQC spectrum for fluegenine G (8) CDCl₃.
Figure S68. HMBC spectrum for fluegenine G (8) in CDCl₃.
Figure S69. ROESY spectrum for flueggenine G (8) in CDCl₃.
Figure S70. IR spectrum for flueggenine G (8).
Figure S71. (+)-ESIMS spectrum for flueggenine G (8).
Figure S72. (+)-HRESIMS spectrum for flueggenine G (8).

Elemental Composition Report

Single Mass Analysis

- **Tolerance:** 5.0 PPM / DBE: min = -1.5, max = 50.0
- **Element prediction:** Off
- **Number of isotope peaks used for i-FIT:** 3

Monoisotopic Mass, Even Electron Ions

626 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elements Used:
- C: 5-80
- H: 2-120
- N: 0-4
- O: 0-20

Calc. Mass

- **m/z:** 610.2931
- **PEM:** 610.2927
- **DBE:** -0.7
- **i-FIT:** 89.9
- **i-FIT (Norm):** 1.5
- **Formula:** C36 H40 N3 O6

Calc. Mass

- **m/z:** 610.2932
- **PEM:** 610.2928
- **DBE:** -1.2
- **i-FIT:** 96.7
- **i-FIT (Norm):** 6.8
- **Formula:** C33 H48 N O17

79
Figure S73. 1H NMR spectrum for fluvirosine H (9) in CDCl$_3$.
Figure S74. 13C NMR spectrum for flueggenine H (9) in CDCl$_3$.
Figure S75. 1H–1H COSY spectrum for fluegenine H (9) in CDCl$_3$.
Figure S76. HSQC spectrum for flueggenine H (9) CDCl₃.
Figure S77. HMBC spectrum for flueggenine H (9) in CDCl$_3$.

![HMBC Spectrum](image)
Figure S78. ROESY spectrum for flueggenine H (9) in CDCl₃.
Figure S79. IR spectrum for fluggenine H (9).
Figure S80. (+)-ESIMS spectrum for flueggenine H (9).
Figure S81. (−)-HRESIMS spectrum for flueggenine H (9).
Figure S82. 1H NMR spectrum for fluevirosine I (10) in CDCl$_3$.
Figure S83. 13C NMR spectrum for flueggenine I (10) in CDCl$_3$.
Figure S84. 1H–1H COSY spectrum for flueggenine I (10) in CDCl$_3$.
Figure S85. HSQC spectrum for flueggenine I (10) CDCl₃.
Figure S86. HMBC spectrum for flueggenine I (10) in CDCl$_3$.
Figure S87. ROESY spectrum for flueggenine I (10) in CDCl₃.
Figure S88. IR spectrum for flueggenine I (10).
Figure S89. (+)-ESIMS spectrum for flueggoine 1 (10).
Figure S90. (+)-HRESIMS spectrum for flueggenine I (10).