Visible Detection of Explosive Nitroaromatics Facilitated by Large Stokes Shift of Luminescence using Europium and Terbium Doped Yttrium based MOFs

Debal Kanti Singha,a Prakash Majee,a Sudip Kumar Mondal,b and Partha Mahata*a

aDepartment of Chemistry, Suri Vidyasagar College, Suri, Birbhum, PIN-731101, West Bengal, India.
Email: parthachem@gmail.com

bDepartment of Chemistry, Siksha-Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India. Email: sudip.mondal@visva-bharati.ac.in

ELECTRONIC SUPPLEMENTARY INFORMATION
Fig. S1: (A) Powder XRD (CuKα) patterns: (a) simulated from single crystal X-ray data of \([\text{Y}_{1.0}(\text{OBA})(\text{Ox})_{0.5}(\text{H}_2\text{O})_2]\), **Y-MOF** (CCDC: 659373)*, (b) **Y-MOF**, (c) **Y-MOF:Eu** (d) **Y-MOF:Tb**. *[C. –Y. Sun, X. –J. Zheng, X. –B.Chen, L.-C. Li and L. –P. Jin, *Inorganica Chimica Acta*, 2009, *362*, 325]. (B) Powder XRD (CuKα) patterns: (a) simulated from single crystal X-ray data of \([\text{Y}_{1.0}(\text{OBA})(\text{Ox})_{0.5}(\text{H}_2\text{O})_2]\), **Y-MOF** (CCDC: 659373)*, (b) **Y-MOF:Eu,Tb**.
Fig. S2: SEM images: (a) Y-MOF, (b) Y-MOF:Eu, (c) Y-MOF:Tb, (d) Y-MOF:Eu, Tb.
Fig. S3. Representative EDX plot of **Y-MOF:Eu,Tb**. Note the Y, Eu and Tb are in molar ratio of ~9:0.5:0.5.

EDAX ZAF Quantification (Standardless)
Element Normalized

<table>
<thead>
<tr>
<th>Elem</th>
<th>Wt %</th>
<th>At %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y L</td>
<td>81.88</td>
<td>89.59</td>
</tr>
<tr>
<td>EuL</td>
<td>8.16</td>
<td>5.14</td>
</tr>
<tr>
<td>TbL</td>
<td>9.96</td>
<td>5.27</td>
</tr>
</tbody>
</table>
Fig. S4: Thermogravimetric analysis (TGA) of Y-MOF in nitrogen atmosphere.
Fig. S5: Dotted line show excitation spectra (monitored at $\lambda_{em} = 365$ nm) of Y-MOF and solid lines represent the emission spectra of Y-MOF, Y-MOF:Eu, Y-MOF:Tb and Y-MOF:Eu,Tb dispersed in acetonitrile ($\lambda_{ex} = 275$ nm, filter: 515 nm cut-off for Y-MOF:Eu, filter: 430 nm cut-off for Y-MOF:Tb, filter: 430 nm cut-off for Y-MOF:Eu,Tb). All the spectra measured using PerkinElmer LS-55 spectrofluorometer. All the four suspensions in acetonitrile were prepared by sonicating the mixture of solvothermally synthesized Y-MOF, Y-MOF:Eu, Y-MOF:Tb and Y-MOF:Eu,Tb for 1 hour.
Fig. S6: Emission spectra of **Y-MOF:Eu** dispersed in acetonitrile upon incremental addition of NT solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). The final concentration of NT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. **Y-MOF:Eu** suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized **Y-MOF:Eu** for 1 hour.
Fig. S7: Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon incremental addition of DNT solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). The final concentration of DNT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by sonicking the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour.
Fig. S8: Emission spectra of \textit{Y-MOF:Eu} dispersed in acetonitrile upon incremental addition of NB solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). The final concentration of NB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. \textit{Y-MOF:Eu} suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized \textit{Y-MOF:Eu} for 1 hour.
Fig. S9: Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon incremental addition of DNB solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). The final concentration of DNB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour.
Fig. S10: Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon incremental addition of Phenol solution ($\lambda_{\text{ex}} = 275$ nm; filter: 515 nm cut-off). The final concentration of Phenol in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour.
Fig. S11: Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon incremental addition of Toluene solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). The final concentration of Toluene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour.
Fig. S12: Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon incremental addition of Benzene solution ($\lambda_{\text{ex}} = 275$ nm; filter: 515 nm cut-off). The final concentration of Benzene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by soninating the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour.
Fig. S13: Plot of fraction of luminescence intensity of Y-MOF:Eu (at 614 nm) vs concentration of analytes. I_0 and I are luminescence intensity in absence and presence of analyte, respectively.
Fig. S14: Percentage of luminescence quenching with respect of $^5D_0 \rightarrow ^7F_2$ (at 614 nm) emission of Y-MOF:Eu with 100 μM of different analytes.
Fig. S15: Emission spectra of **Y-MOF:Tb** dispersed in acetonitrile upon incremental addition of NT solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of NT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. **Y-MOF:Tb** suspension in acetonitrile was prepared by sonicking the mixture of solvothermally synthesized **Y-MOF:Tb** for 1 hour.
Fig. S16: Emission spectra of \textbf{Y-MOF:Tb} dispersed in acetonitrile upon incremental addition of DNT solution ($\lambda_{\text{ex}} = 275$ nm; filter: 430 nm cut-off). The final concentration of DNT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. \textbf{Y-MOF:Tb} suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized \textbf{Y-MOF:Tb} for 1 hour.
Fig. S17: Emission spectra of Y-MOF:Tb dispersed in acetonitrile upon incremental addition of NB solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of NB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Tb for 1 hour.
Fig. S18: Emission spectra of \textbf{Y-MOF:Tb} dispersed in acetonitrile upon incremental addition of DNB solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of DNB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. \textbf{Y-MOF:Tb} suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized \textbf{Y-MOF:Tb} for 1 hour.
Fig. S19: Emission spectra of Y-MOF:Tb dispersed in acetonitrile upon incremental addition of Phenol solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of Phenol in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Tb for 1 hour.
Fig. S20: Emission spectra of Y-MOF:Tb dispersed in acetonitrile upon incremental addition of Toluene solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of Toluene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Tb for 1 hour.
Fig. S21: Emission spectra of Y-MOF:Tb dispersed in acetonitrile upon incremental addition of Benzene solution ($\lambda_{\text{ex}} = 275$ nm; filter: 430 nm cut-off). The final concentration of Benzene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Tb for 1 hour.
Fig. S22: Plot of fraction of luminescence intensity of Y-MOF:Tb (at 541 nm) vs concentration of analytes. I_0 and I are luminescence intensity in absence and presence of analyte, respectively.
Fig. S23: Percentage of luminescence quenching with respect of $^5\text{D}_4 \rightarrow ^7\text{F}_5$ (at 541 nm) emission of Y-MOF:Tb with 100 μM of different analytes.
Fig. S24: (A) Emission spectra of Y-MOF:Eu dispersed in acetonitrile upon the incremental addition of TNP solution in a mixture of 100 µM toluene and 100 µM benzene to Y-MOF:Eu solution ($\lambda_{ex} = 275$ nm; filter: 515 nm cut-off). All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu for 1 hour. The final added concentration of TNP, Benzene (B) and Toluene (T) are given below:

(a) 0 µM B + 0 µM T + 0 µM TNP, (b) 0 µM B + 100 µM T + 0 µM TNP, (c) 100 µM B + 100 µM T + 0 µM TNP, (d) 100 µM B + 100 µM T + 20 µM TNP, (e) 100 µM B + 100 µM T + 40 µM TNP, (f) 100 µM B + 100 µM T + 60 µM TNP, (g) 100 µM B + 100 µM T + 80 µM TNP, (h) 100 µM B + 100 µM T + 100 µM TNP.

(B) Bar diagram showing the overall luminescence intensity after the sequential addition of the analytes as mentioned in Figure (A).
Fig. S25: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of TNP solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of TNP in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicking the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S26: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of NT solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of NT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S27: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of DNT solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of DNT in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S28: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of NB solution (λ_ex = 275 nm; filter: 430 nm cut-off). The final concentration of NB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S29: Emission spectra of Y-MOF:Eu, Tb dispersed in acetonitrile upon incremental addition of DNB solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of DNB in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicating the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S30: Emission spectra of Y-MOF:Eu, Tb dispersed in acetonitrile upon incremental addition of Phenol solution (λ_{ex} = 275 nm; filter: 430 nm cut-off). The final concentration of Phenol in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicking the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S31: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of Toluene solution ($\lambda_{ex} = 275$ nm; filter: 430 nm cut-off). The final concentration of Toluene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonication the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S32: Emission spectra of Y-MOF:Eu,Tb dispersed in acetonitrile upon incremental addition of Benzene solution (\(\lambda_{\text{ex}} = 275\) nm; filter: 430 nm cut-off). The final concentration of Benzene in the medium is indicated in the legend. All the spectra are measured using PerkinElmer LS-55 spectrofluorometer. Y-MOF:Eu,Tb suspension in acetonitrile was prepared by sonicking the mixture of solvothermally synthesized Y-MOF:Eu,Tb for 1 hour.
Fig. S33: Plot of fraction of luminescence intensity of \textbf{Y-MOF:Eu,Tb (at 541 nm)} vs concentration of analytes. \(I_0 \) and \(I \) are luminescence intensity in absence and presence of analyte, respectively.
Fig. S34: Percentage of luminescence quenching with respect of $^5\text{D}_4 \rightarrow \text{^7F}_5$ of Tb$^{3+}$ ions (at 541 nm) emission of Y-MOF:Eu,Tb with 100 μM of different analytes.
Fig. S35. (a) Plot of I_0/I of Y-MOF:Eu (at 614 nm) vs concentration of analytes in lower concentration range of analytes (upto 20 μM). I_0 and I are luminescence intensity in absence and presence of analyte, respectively (b) Plot of I_0/I of Y-MOF:Eu (at 541 nm) vs concentration of analytes in lower concentration range of analytes (upto 20 μM). I_0 and I are luminescence intensity in absence and presence of analyte, respectively.
Fig. S36. Stern-Volmer plots of analytes in higher concentration range of analytes (upto 100 μM) for Y-MOF:Eu.