Experimental Section

Autoclaves were loaded with reactants in a glove box (Saffron) under N₂. IR spectra were recorded on a Perkin-Elmer 100 spectrometer with universal ATR. Elemental analysis was obtained using a Perkin-Elmer 4200 elemental analyser. Powder X-ray diffraction (XRD) experiments were performed using a X'Pert Pro diffractometer with Cu-K α radiation (λ = 1.5418Å) operating at 40 kV and 40 mA and the scanning angle ranged from 10° to 90° of 20. Both carbon and hydrogen analyses were done using a vario Micro Elemental analyzer (Elementar Analysensysteme GmbH, Germany). Nuclear magnetic resonance (NMR) spectra in solution were recorded on a Bruker Avance III 500-MHz spectrometer at 298 K using chloroform-d (CDCl₃) as solvent and tetramethylsilane as standard. Scanning electron microscopy (SEM) images were collected using a field emission scanning electron microscope (Hitachi S-4800). Transmission electron microscopy (TEM) was performed with a FEI Tecnai G2 F30 electron microscope operating at an accelerating voltage of 300 kV. The surface compositions of sample A and B were determined by energy dispersive spectroscopy (EDS). EDS data were collected using an Thermo SCIENTIFIC energy dispersive X-ray spectroscopy system attached to a Hitachi S-4800 SEM, with an acceleration voltage of 15keV. X-ray photoelectron spectra (XPS) were operated on a spectrometer (Kratos AXIS Ultra DLD, Shimadzu, Japan). Thermogravimetric analysis was obtained using a TA O100-DSC thermal analyzer, with a constant heating rate of 5 °C/min in air atmosphere. UV-visible spectra of powdered samples of A and B were recorded in diffuse reflectance mode using a Perkin Elmer Lambda 12 UV-visible spectrometer equipped with an integration sphere (Labsphere RSA-PE-20) and referenced to a white PTFE standard.

Synthesis and Characterisation of 1

Titanium ethoxide (> 97% Sigma-Aldrich, 2 ml, 8.8 mmol), EuCl₃ (99% Sigma-Aldrich, 0.258g, 1mmol) and anhydrous ethanol (Sigma-Aldrich, 5.0ml) were mixed in a Teflon-lined autoclave and heated at 150°C for 3 days. Slow cooling to room temperature gave a colourless solution. Clourless block crystals of **4** were obtained by slow evaporation of the filtered solution at room temperature for four weeks, Yield 0.15g (21.2 % with respect to Eu supplied). 1H NMR (500.1 MHz, +25°CDCl₃, δ ppm), collection of multiplets in the ranges 5.0-3.4 (CH₂-O) and 2.0-0.8 (CH₃). Elemental analysis; found C 31.2, H 6.8, Cl 4.9; cald. for **1**, C 30.6, H. 6.6, Cl 5.0. IR (800-4000 cm⁻¹), v/ cm⁻¹ = 891(m), 924(m), 1043(vs), 1091(s), 1123(s), 1376(m), 1440(w), 2359(w), 2866(m), 2925(m), 2969 (m), 3323(w).

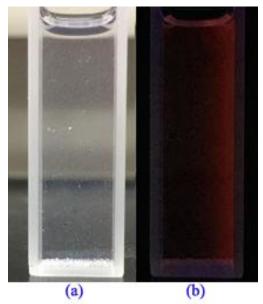
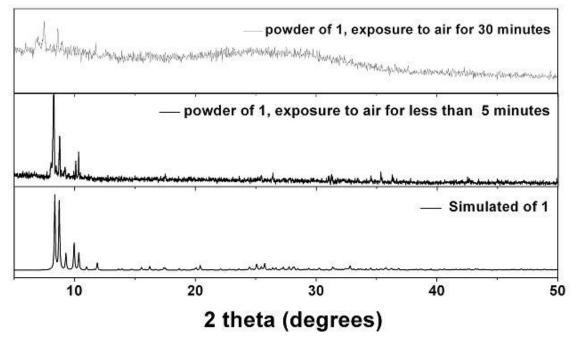



Fig. S1 (a) Optical image of dichloromethane solution of 1, (b) image of the fluorescence emission of dichloromethane solution of 1 under 254 nm irradiation.

As shown in **Fig. S2**, the simulated XRD patterns of cage1 coincide well with the measured powder XRD patterns. The diffraction peaks at 2θ = 8.34°, 8.34°, 9.30°, 9.92° and 10.36° can be indexed to (0,1,1), (1,1,0), (0,2,0), (1,0,-1) and (1,0,1) crystal planes of **1**. However, most diffraction peaks were disappeared after exposed to air for 30 minutes, which indicated the sample had been hydrolyzed and decomposed.

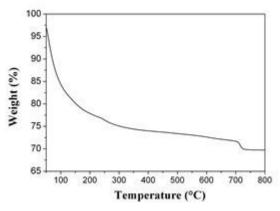


Fig. S3 TG curve of cage 1

Single Crystal X-ray Crystallography

Crystal data were collected on a Bruker Smart Apex CCD diffractometer. The structures were solved by Direct Methods and refined by full-matrix least squares on F^2 . (Ref: SHELX, G. M. Sheldrick, *Acta Crystallogr.* **2008**, *A64*, 112).

Compound	8
Chemical	C ₃₆ H ₉₂ Cl ₂ Eu ₂ O ₂₀ Ti ₄
formula	
FW	1411.52
Crystal system	Monoclinic
Space group	P 21/n
Unit cell	
dimensions	
a (Å)	11.9475(7)
b (Å)	18.9968(13)
<i>c</i> (Å)	12.7731(9)
α (°)	00,400(0)
β (°)	92.489(2)
γ (°)	2006 2(2)
$V(Å^3)$	2896.3(3)
Z	2 1.619
$\rho_{\text{calc}}(\text{Mg/m}^3)$	2.812
μ (Mo-K α)	2.812
(mm ⁻¹) reflections	26482
collected	20482
independent	5091
reflections	(0.0237)
(R_{int})	(0.0257)
R1, wR2	0.0230
$[I \ge 2\sigma(I)]$	0.0615
R1, wR2 (all	0.0257
data)	0.0636

Table SI-1 Details of the structure solution and refinement of 1

Table SI-2 Selected bond lengths (Å) and angles (°).

Bond	Distance	Bond	Distance
Eu1–O2#1	2.3691(19)	Eu1–O3	2.4557(19)
Eu1–O2	2.3777(18)	Eu1-O10#1	2.466(2)
Eu1–O1	2.439(2)	Eu1–O4	2.5749(19)
Eu1–O6	2.454(2)	Eu1–Cl1	2.6838(8)
Til-O8	1.789(2)	Ti2-09	1.790(2)
Til-O7	1.861(2)	Ti2-O10	1.919(2)
Til-O3	1.936(2)	Ti2-O6	1.922(2)
Til-O2	1.9808(19)	Ti2–O2	2.0079(19)
Til-O5	2.071(2)	Ti2–O5	2.023(2)
Til-O4	2.168(2)	Ti2–O4	2.115(2)
O2#1-Eu1-O2	74.06(7)	O3-Eu1-O10#1	80.85(7)
O2#1-Eu1-O1	75.28(7)	O2#1-Eu1-O4	126.09(6)
O2-Eu1-O1	137.81(7)	O2–Eu1–O4	58.15(6)

O2#1–Eu1–O6	78.28(6)	O1–Eu1–O4	125.28(7)
O2–Eu1–O6	67.57(6)	O6–Eu1–O4	62.24(6)
O1-Eu1-O6	78.39(7)	O3–Eu1–O4	65.59(6)
O2#1-Eu1-O3	116.41(7)	O10#1-Eu1-O4	146.28(7)
O2–Eu1–O3	64.79(6)	O2#1-Eu1-Cl1	145.92(5)
O1–Eu1–O3	157.06(7)	O2-Eu1-Cl1	139.36(5)
O6-Eu1-O3	122.13(6)	O1–Eu1–Cl1	77.79(5)
O2#1-Eu1-O10#1	65.61(6)	O6-Eu1-Cl1	116.15(5)
O2-Eu1-O10#1	105.38(7)	O3-Eu1-Cl1	83.25(5)
O1-Eu1-O10#1	87.25(8)	O10#1-Eu1-Cl1	92.77(5)
O6-Eu1-O10#1	143.51(7)	O4–Eu1–Cl1	86.73(5)
Symmetry code: (#1)	1-x, -y, -z.		

Preparation of A, B, and P

20ml dichloromethane solution of 1 (0.1 mmol) was dissolved in 60ml 50% ethanol aqueous solution and then stirred under ultrasound. After filtering the suspension and drying at 150 °C for 12h, a white powder of A was obtained.

1.5g of dried crystals of 1 was heated at 500 $^{\circ}$ C for 5 hour in a (dry) air flow, an off-white solid of **B** was obtained.

Precursor 1 was dissolved in poly-methylmethacrylate (weight ratio 1:20) in a toluene-dichloromethane mixed solution. The resulting solution was cast onto a clean glass plate and dried at 15 °C. Film P were obtained by soaking the glass plates in de-ionized water which led to the films separating from the glass substrate.

Elemental Analysis of A and B

A, C 0.51 wt %, H 0.72%; **B**, C 1.12 wt %, H 0.44%. These results can be compared to EDS measurements which show much higher C and H values due to background and surface contamination.

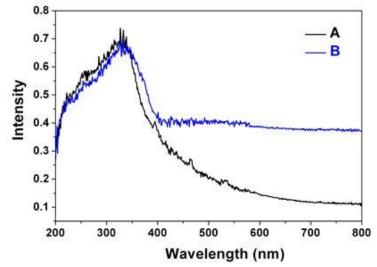


Fig. S4 Solid-state UV-vis absorption spectra of A and B

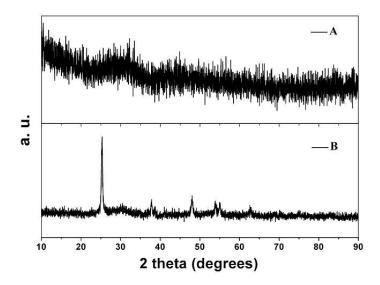
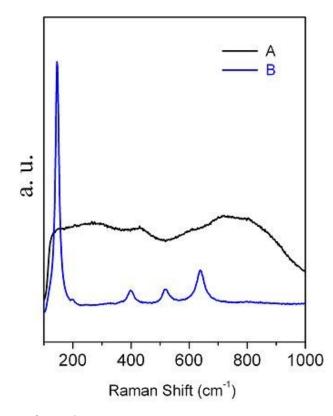



Fig. S5 Powder-XRD of A and B

The *p*XRD result for sample **B** show that the TiO_2 is present in the form of anatase and there is a weak peak at 30.35 degree which is contributed by $Eu_2Ti_2O_7$; whereas **A** is amorphous. (Ref: J. L. Her, C. W. Lin, K. Y. Chang and T. M. Pan, *Int. J. Electrochem. Sci.*, 2012, **7**, 387-404).

Fig. S6 Raman spectra of A and B

Raman spectra of sample **A** exhibit several broad bands centered at 275, 432, 606, 720, 805cm⁻¹ due to its amorphous phase, but raman spectra of sample **B** show sharp peaks at 145, 199, 399, 519, 642 cm⁻¹ which is contributed by anatase phase (Ref: O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai and L. Kavan, *Phys. Chem. Chem. Phys.*, 2012, **14**, 14567-14572).

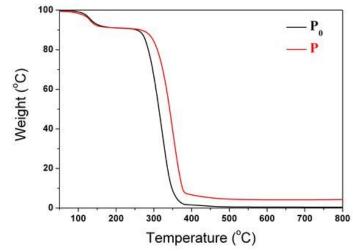


Fig. S7 TG curve of P₀ and P.

The thermal stability of the films is evaluated by the 10% weight loss temperatures ($T_{10\%}$). As shown in Fig. S5, both P_0 and P are stable up to 250 °C, $T_{10\%}$ of P is 265.4 °C [higher than that of P_0 (254.8 °C)]. It can be seen that the thermal stability of the PMMA film is increased after incorporation of cage 1.

Adjustment of film **P**.

Changing the weight ratio of cage 1 and poly-methylmethacrylate into 1:10 (P_1) and 1:5 (P_2), we can obtain different films show stronger fluorescence (Fig S8), the emission intensity increases with the increase of concentration of 1; altering the drying temperature from 15°C to 40 °C, the surface of P can be adjusted from smooth to porous (Fig S9b, Fig S9c). Moreover, the thickness of film P can also be adjusted (Fig S9).

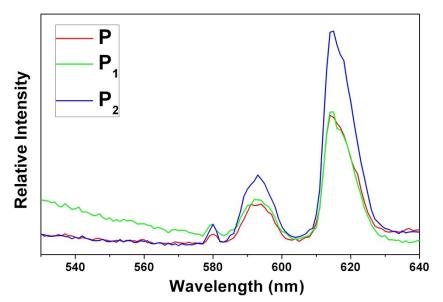


Fig. S8 emission spectra of P_1 , P_2 and P under 326 nm excitation.

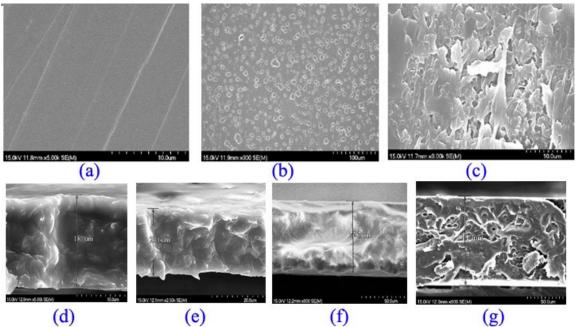


Fig. S9 SEM images of films P with (a) smooth surface, (b) porous surface and (c) surface defects; SEM images of cross-section of films P with (d) $15\mu m$, (e) $21.6\mu m$, (f) $72.7\mu m$, (g) $114\mu m$.

EDS Analysis of A and B

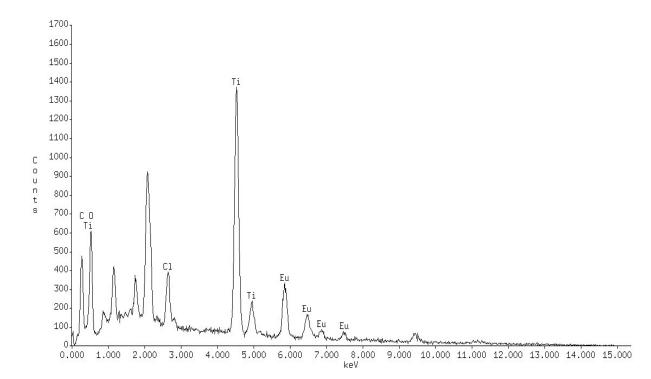


Fig. S10 EDS on sample A

Element	Atomic Percentage	Weight Percentage
С	33.28 %	15.05 %
0	44.82 %	27.00 %
Cl	2.13 %	2.85 %
Ti	14.81 %	26.71 %
Eu	4.96 %	28.39 %

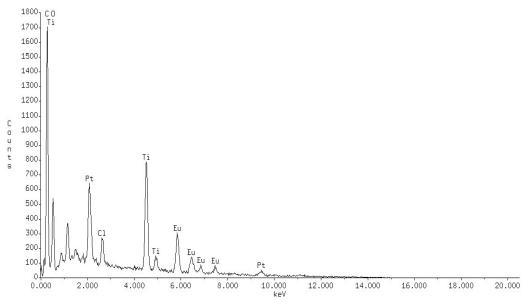


Fig. S11 EDS on sample B

Table S3 EDS on sample B

Element C	Atomic Percentage 31.51 %	Weight Percentage 11.63 %	
0	40.24 %	19.78 %	
Cl	1.18 %	1.28 %	
Ti	12.91 %	19.01 %	
Eu	7.60 %	35.52 %	

Table S3 EDS on sample A

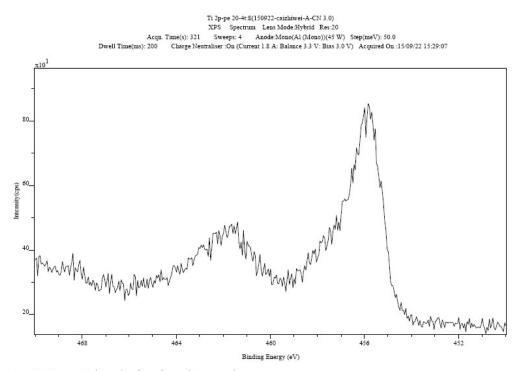


Fig. S12 XPS signal of A for Ti 2p region.

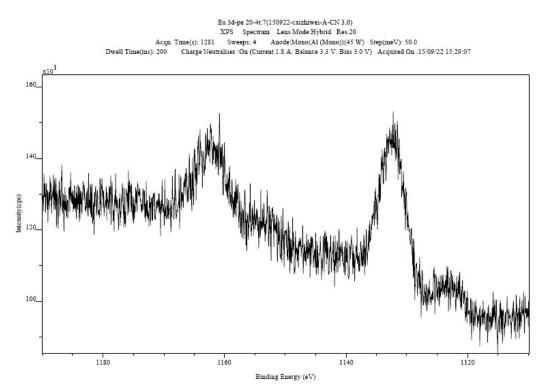


Fig. S13 XPS signal of A for Eu 3d region

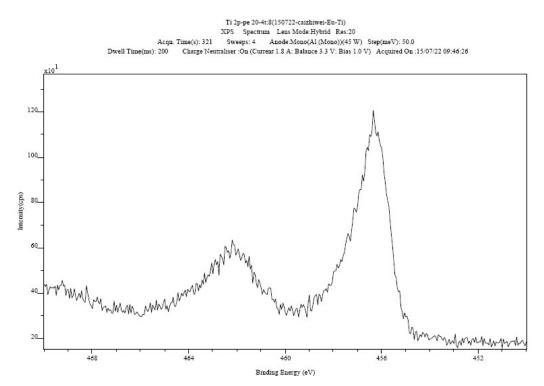


Fig. S14 XPS signal of B for Ti 2p region.

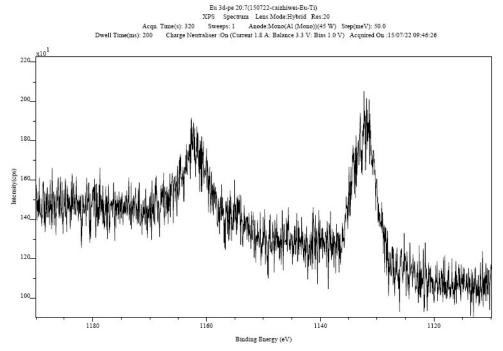
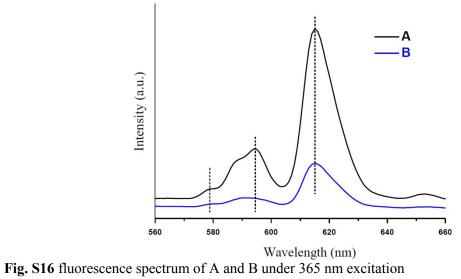



Fig. S15 XPS signal of B for Eu 3d region

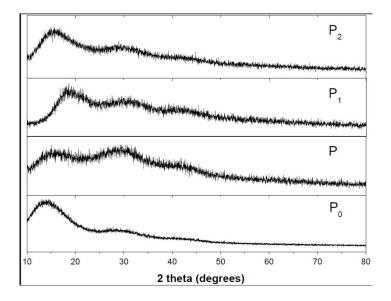


Fig. S17 Powder-XRD of P₀, P, P₁ and P₂.

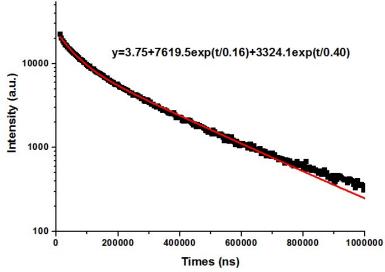


Figure S18. The decay and fitting curves of PL lifetime spectrum.