Piperazine and DBU: A safer alternative for rapid and efficient Fmoc deprotection in Solid Phase Peptide Synthesis

KrittiKa Ralhan, V. Guru KrishnaKumar and Sharad Gupta*

Table of Contents

Supplementary Figure 1. Comparative plot showing % Fmoc release by various deprotection solutions for resin bound Fmoc-Valine ..2

Supplementary Figure 2. Deprotection kinetics for Fmoc release using 5% piperazine. ln[1-(A_t/A_max)] was plotted against time (s) and a straight-line (y=mx+c) was fit assuming pseudo first order kinetics. Half-life was calculated using t_1/2 = 0.693/m. A_t= absorbance at time t at 301 nm, A_max = final absorbance at 301 nm. ..3

Supplementary Figure 3. Mass spectra of product and by-products obtained from YA_{10}K synthesis corresponding to RP-HPLC chromatogram in Figure 2a. ...4

Supplementary Figure 4. Mass spectra of difficult peptide sequences synthesized using 5% piperazine + 2% DBU as deprotection solution. Post cleavage, samples were injected by direct TFA method as described in the experimental section (a) PolyQ (b) PHF6 (c) PHF6* (d) Aβ_{25-35} ..6

Supplementary Figure 5. Mass spectra of VKDGYI after incubation of resin bound peptide in 20% piperidine corresponding to RP-HPLC chromatogram in Figure 3 (ii). Post cleavage, samples were injected by direct TFA method. ...7

Supplementary Figure 6. Mass spectra of VKDGYI after incubation of resin bound peptide in 5% piperazine + 1% DBU corresponding to RP-HPLC chromatogram in Figure 3 (iv). Post cleavage, samples were injected by direct TFA method. ..7

Supplementary Figure 7. Mass spectrum corresponding to RP-HPLC chromatogram (Figure 4) of Gly-Tyr(OtBu) di-peptide obtained after cleavage from 2-chlorotrityl chloride resin under mild acidic conditions. ...8
Supplementary Figure 1. Comparative plot showing % Fmoc release by various deprotection solutions for resin bound Fmoc-Valine.
Supplementary Figure 2. Deprotection kinetics for Fmoc release using 5% piperazine. ln[1-(A_t/A_max)] was plotted against time (s) and a straight-line (y=mx+c) was fit assuming pseudo first order kinetics. Half-life was calculated using t_{1/2} = 0.693/m. A_t = absorbance at time t at 301 nm, A_max = final absorbance at 301 nm.
Supplementary Figure 3. Mass spectra of product and by-products obtained from YA_{10K} synthesis corresponding to RP-HPLC chromatogram in Figure 2a.
(a) PolyQ (K_2Q_8K_2)

(b) PHF6 (VQIVYK)
Supplementary Figure 4. Mass spectra of difficult peptide sequences synthesized using 5% piperazine + 2% DBU as deprotection solution. Post cleavage, samples were injected by direct TFA method as described in the experimental section (a) PolyQ (b) PHF6 (c) PHF6* (d) Aβ25-35.

* Oxidation of Methionine corresponds to M+16 peak
Supplementary Figure 5. Mass spectra of VKDGYI after incubation of resin bound peptide in 20% piperidine corresponding to RP-HPLC chromatogram in Figure 3 (ii). Post cleavage, samples were injected by direct TFA method.

Supplementary Figure 6. Mass spectra of VKDGYI after incubation of resin bound peptide in 5% piperazine + 1% DBU corresponding to RP-HPLC chromatogram in Figure 3 (iv). Post cleavage, samples were injected by direct TFA method.
Supplementary Figure 7. Mass spectrum corresponding to RP-HPLC chromatogram (Figure 4) of Gly-Tyr(OtBu) di-peptide obtained after cleavage from 2-chlorotrityl chloride resin under mild acidic conditions.