Supporting Information for

Multiple thermal magnetic relaxation in a two-dimensional ferromagnetic dysprosium(III) metal-organic framework

Cai-Ming Liu,a,* Jin Xiong,b De-Qing Zhang,a Bing-Wu Wang,b,* and Dao-Ben Zhua

a Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: cmliu@iccas.ac.cn.cn
b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. E-mail: wangbw@pku.edu.cn

Table S1. Continuous Shape Measures calculation for the Dy(III) ions in complex 1.

<table>
<thead>
<tr>
<th>Dy1</th>
<th>EP-9</th>
<th>OPY-9</th>
<th>HBPY-9</th>
<th>JTC-9</th>
<th>JCCU-9</th>
<th>CCU-9</th>
<th>JCSAPR-9</th>
<th>CSAPR-9</th>
<th>JTCTPR-9</th>
<th>TCTPR-9</th>
<th>JTDIC-9</th>
<th>HH-9</th>
<th>MFF-9</th>
</tr>
</thead>
</table>

EP-9 1 D9h Enneagon
OPY-9 2 C8v Octagonal pyramid
HBPY-9 3 D7h Heptagonal bipyramid
JTC-9 4 C3v Johnson triangular cupola J3
JCCU-9 5 C4v Capped cube J8
CCU-9 6 C4v Spherical-relaxed capped cube
JCSAPR-9 7 C4v Capped square antiprism J10
CSAPR-9 8 C4v Spherical capped square antiprism
JTCTPR-9 9 D3h Tricapped trigonal prism J51
TCTPR-9 10 D3h Spherical tricapped trigonal prism
JTDIC-9 11 C3v Tridiminished icosahedron J63
HH-9 12 C2v Hula-hoop
MFF-9 13 Cs Muffin

Dy2, eight-coordination

<table>
<thead>
<tr>
<th>Dy2</th>
<th>OP-8</th>
<th>HPY-8</th>
<th>HBPY-8</th>
<th>CU-8</th>
<th>SAPR-8</th>
<th>TDD-8</th>
<th>JGBF-8</th>
<th>JETBPY-8</th>
<th>JBTPR-8</th>
<th>BTPR-8</th>
<th>JSD-8</th>
<th>TT-8</th>
<th>ETBPY-8</th>
</tr>
</thead>
</table>

OP-8 1 D8h Octagon
HPY-8 2 C7v Heptagonal pyramid
HBPY-8 3 D6h Hexagonal bipyramid
CU-8 4 Oh Cube
SAPR-8 5 D4d Square antiprism
TDD-8 6 D2d Triangular dodecahedron
JGBF-8 7 D2d Johnson gyrobifastigium J26
JETBPY-8 8 D3h Johnson elongated triangular bipyramid J14
JBTPR-8 9 C2v Biaugmented trigonal prism J50
BTPR-8 10 C2v Biaugmented trigonal prism
JSD-8 11 D2d Snub diphenoind J84
TT-8 12 Td Triakis tetrahedron
ETBPY-8 13 D3h Elongated trigonal bipyramid
Fig. S1. TGA curve for complex 1.
Fig. S2. Frequency dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac susceptibility of 1 at 2 K. The solid lines represent the best fitting with the sum of two modified Debye functions.

![Graph of χ' and χ'' vs. frequency at 3 K](image)

Fig. S3. Frequency dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac susceptibility of 1 at 3 K. The solid lines represent the best fitting with the sum of two modified Debye functions.

![Graph of χ' and χ'' vs. frequency at 4 K](image)

Fig. S4. Frequency dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac susceptibility of 1 at 4 K. The solid lines represent the best fitting with the sum of two modified Debye functions.
two modified Debye functions.

Fig. S5. Frequency dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac susceptibility of I at 5 K. The solid lines represent the best fitting with the sum of two modified Debye functions.

Fig. S6. Frequency dependence of the in-phase (χ', top) and out-of-phase (χ'', bottom) ac susceptibility of I at 6 K.
ac susceptibility of 1 at 6 K. the solid lines represent the best fitting with the sum of two modified Debye functions.

Figure S7. Plot of M versus H at 1.9 K from -10000 to 10000 Oe for 1.

Figure S8. The fragment for CASSCF/RASSI calculations. The vectors are the
calculated easy axes (green for Dy1 and pink for Dy2).

Table S2. Linear combination of two modified Debye model fitting parameters from 2 K to 6 K of 1 under 2k Oe dc field.

<table>
<thead>
<tr>
<th>T(K)</th>
<th>(\chi_2) (cm(^3).mol(^{-1}))</th>
<th>(\chi_1) (cm(^3).mol(^{-1}))</th>
<th>(\chi_0) (cm(^3).mol(^{-1}))</th>
<th>(\tau_1) (s)</th>
<th>(\alpha_1)</th>
<th>(\tau_2) (s)</th>
<th>(\alpha_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13.6195</td>
<td>2.87424</td>
<td>0.94387</td>
<td>0.00114</td>
<td>0.40658</td>
<td>0.6535</td>
<td>0.16444</td>
</tr>
<tr>
<td>3</td>
<td>9.40215</td>
<td>3.77649</td>
<td>0.66312</td>
<td>0.00257</td>
<td>0.44481</td>
<td>0.22462</td>
<td>0.10008</td>
</tr>
<tr>
<td>4</td>
<td>9.64635</td>
<td>3.7187</td>
<td>0.37426</td>
<td>0.00031</td>
<td>0.33492</td>
<td>0.43189</td>
<td>0.48279</td>
</tr>
<tr>
<td>5</td>
<td>5.74306</td>
<td>4.9487</td>
<td>1.67699</td>
<td>0.00042</td>
<td>0.48001</td>
<td>0.1375</td>
<td>0.04474</td>
</tr>
<tr>
<td>6</td>
<td>4.90616</td>
<td>2.41576</td>
<td>4.36308</td>
<td>0.00023</td>
<td>0.24372</td>
<td>0.14306</td>
<td>0.2792</td>
</tr>
</tbody>
</table>