Electrical transport and mechanical properties of thermoelectric tin selenide

Kriti Tyagia,b, Bhasker Gahtoria,1, Sivaiah Bathulaa, Niraj Kumar Singha, Swati Bishnoia,b, S. Aulucka, A. K. Srivastavaa and Ajay Dhara,1

aCSIR-Network for Solar Energy, CSIR-National Physical Laboratory, Physics of Energy Harvesting Division, Dr. K. S. Krishnan Road, New Delhi – 110012, India

bAcademy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, New Delhi- 110012, India

Figure S1: (a) Electronic band structure of \textit{Pnma}-phase of SnSe. Fermi level is indicated by E_F. The crystal structure used to carry out DFT calculations is orthorhombic. The top of valence and lies along Z – Γ direction while bottom of conduction band is located at Γ point yielding an indirect band gap of 0.74 eV. (b) Partial density of states for \textit{Pnma}-phase of SnSe.
Figure S2: Band gap calculation of SnSe (*Pnma*) from UV absorption spectra.

Figure S3: Temperature dependence of thermoelectric compatibility factor of as-synthesized p-type SnSe.