Supporting Information

Quantum dot cluster (QDC)-loaded phospholipid micelles as FRET probe for phospholipase A$_2$ detection

Junling Li1, Yonghua Zhang1, Junjie Ai1, Qiang Gao1*, Honglan Qi1, Chengxiao Zhang1, Zhiliang Cheng2*

1Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China, 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA

Corresponding Author
*Qiang Gao
Tel: 86-29-81530726
Fax: 86-29-81530727
E-mail: gaoqiang@snnu.edu.cn

*Zhiliang Cheng
Tel: 215-573-0290
Fax: 215-573-2071
Email: zcheng@seas.upenn.edu
Experimental

Synthesis of single quantum dot-loaded phospholipid micelles without NBD

The single quantum dot-loaded phospholipid micelles without NBD was prepared using an oil-in-water emulsion-based self-assembly method. A mixture containing HSPC (0.88 mg) and QD (1 mg) in 150 μL chloroform was injected into a glass vial containing 3 mL of water, and the sample was sonicated until a homogenous mixture was obtained. The chloroform was then allowed to evaporate overnight. Following that, QDC-loaded phospholipid micelles samples were centrifuged at 1000 rpm for 30 minutes to remove large aggregates. To obtain the QDC-loaded micelle without NBD, the resulting supernatant was centrifuged at 3000 rpm for half hour, and the pellet was resuspended in water (1 mL). To obtain the single QD-loaded micelle without NBD, the resulting supernatant was then centrifuged at 10000 rpm for half hour, and the pellet was resuspended in water (1 mL). The collected samples of QDC- and QD-loaded phospholipid micelles were stored in the dark at 4 °C and used for UV-vis (Figure S2) and fluorescence (Figure S3) measurement.

Synthesis of NBD-containing liposomes

The NBD-containing liposome was prepared using an oil-in-water emulsion-based self-assembly method. A mixture containing HSPC (0.88 mg) and NBD PC (0.1 mg) in 150 μL chloroform was injected into a glass vial containing 3 mL of water, and the sample was sonicated until a homogenous mixture was obtained. The chloroform was then allowed to evaporate overnight. Following that, NBD-containing liposomes samples were centrifuged at 3000 rpm for 30 minutes to remove large aggregates, the
resulting supernatant was stored in the dark at 4 °C and used for NBD fluorescence measurement (Figure S4).

Chemical information

HSPC

NBD PC

NBD

Hydrophobic CdSe/ZnS QD
Figure S1 TEM image of single quantum dot-loaded phospholipid micelles.
Figure S2 Absorption spectra of single quantum dot-loaded phospholipid micelles without NBD.
Figure S3. Emission spectra of QDC-loaded phospholipid micelles without NBD. Ex, 460 nm. Aliquots (900 μL) of 10.0 mM HEPES buffer (pH 7.4) containing 2.0 mM CaCl₂ and samples (50 μL).
Figure S4. Emission spectra of NBD-containing liposome. Ex, 460 nm. Aliquots (900 μL) of 10.0 mM HEPES buffer (pH 7.4) containing 2.0 mM CaCl₂ and NBD-containing liposomes (50 uL).
Figure S5 Linear range of the probe for the PLA₂ detection. Concentration of PLA₂, 5, 10, 25, 50, 100, 200, 300, 400 U/L. Ex, 460 nm, Em, 545 nm.
Figure S6 Dependence of fluorescence intensity on inhibitor LY311727 concentrations. Concentrations of inhibitor LY311727: 0, 10 μM, 25 μM, 50 μM, 80 μM, 100 μM, 200 μM. The concentration of PLA₂, 50 unit/L.