Supplementary Information for
AlCl₃-Catalyzed [3+3] Cycloaddition of Chalcones and β-Enamine Ketones (Esters): A Highly Efficient Access to Multisubstituted Cyclohexa-1,3-Dienamines

List of contents
1. General experimental information. ...S2
2. General Procedure for the Synthesis of 1. ..S2
3. General Procedure for the Synthesis of 2. ...S3
4. General procedure and spectroscopic data of compounds 3 and 5.S3
5 Copies of Product NMR Spectra...S17
Reference...S40
1. General experimental information.

All reagents and solvents were of commercial quality and were used as received. Reactions were monitored by TLC analysis. Melting points were measured on an X-4 hot stage microscope, and are uncorrected. \(^1\)H NMR spectra were recorded on an NMR instrument operated at 500 MHz. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl\(_3\): \(\delta\) 7.26 ppm). \(^{13}\)C NMR spectra were recorded on an NMR instrument operated at 126 MHz with complete proton decoupling. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl\(_3\): \(\delta\) 77.1 ppm). Topspin (Bruker) or Mestrenova (Mestrelab) software packages were used throughout for data processing;

\[
\begin{align*}
\text{CHO} & + \text{O} \\
\text{aq. NaOH} & \quad \xrightarrow{\text{EtOH}} \quad \text{O} \\
\text{EtOH} & \quad \xrightarrow{\text{1a}} \quad \text{Chalcone 1a}
\end{align*}
\]

To a solution of benzaldehyde (1.06 g, 10 mmol) and acetophenone (1.20 g, 10 mmol) in ethanol (30 mL) was added 30 mL aqueous sodium hydroxide (0.8 g, 20 mmol) dropwise via addition funnel at 0 °C. Stirred the reaction mixture for 3 h at 20-25 °C. After completion of the reaction (detected by TLC), the reaction mixture was filtered, wash with ethanol-water solution (1/1) and dried. The desired chalcone 1a was obtained. 1a: (1.77 g, 85%) \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.02(d, \(J=7.0\) Hz, 2H), 7.82 (d, \(J=15.5\) Hz, 1H), 7.65(d, \(J=5.5\) Hz, 2H), 7.58(d, \(J=15.5\) Hz, 1H), 7.51(d, \(J=8.0\) Hz, 3H), 7.43(d, \(J=7.5\) Hz, 3H); GC-MS[m/z]: 208.9 ([M+1]^+, 100%), 105.1(25%).
3. General Procedure for the Synthesis of 2.5

A mixture of ethyl acetoacetate (1.30 g, 10 mmol), aniline (1.12 g, 12 mmol), and Ni(OAc)₂ (0.352 g, 2 mmol) was stirred at room temperature. After completion of the reaction (detected by TLC), ethyl acetate (10 mL) was added and the heterogeneous mixture was filtered. The filter cake was washed with diethyl ether and the catalyst was recovered. The organic phase was washed with water, dried over magnesium sulfate, and concentrated in vacuo. Further purification was carried out by flash chromatography on silica gel (ethyl acetate/petroleum ether = 1/4) provided desired product 2a (1.81 g, 88%). 2a: ¹H NMR (500 MHz, CDCl₃) δ 10.38 (br s, 1H), 7.32 (t, 2H, J=7.8 Hz), 7.15 (t, 1H, J=7.0 Hz), 8.00 (d, 2H, J=8.0 Hz), 4.69 (s, 1H), 4.15 (q, 2H, J=7.1 Hz), 2.00 (s, 3H), 1.28 (t, 3H, J=7.1 Hz).

4. General procedure and spectroscopic data of compounds 3 and 5.

Chalcone 1a (0.104 g, 0.5 mmol), β-enamine ester 2a (0.123 g, 0.6 mmol), AlCl₃ (0.066 g, 0.5 mmol) were added to dry toluene (5 mL) under N₂ and stirring was continued for 8h at 80 °C. After completion of the reaction, as indicated by TLC, the mixture was dissolved in CH₂Cl₂ (30 mL) and then washed with aqueous ammonia (10 %) (15 mL × 2). The separated organic layer was concentrated under vacuum and the solvent was evaporated under reduced pressure. Pure products 3a were obtained by silica gel column chromatography as a yellow solid (0.184 g, 93%), eluting with a petroleum ether-ethyl acetate mixture (20:1, v/v).
ethyl 5'- (phenylamino)-2',3'-dihydro-[1,1';3',1''-terphenyl]-4'-carboxylate (3a):

\[
\text{NH} \quad \text{COOEt}
\]

yellow solid, 3a (0.184 g, 93%); mp 113-115 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 10.80 (s, 1H), 7.38 (t, \(J = 7.9\) Hz, 2H), 7.34-7.28 (m, 7H), 7.25 (t, \(J = 7.6\) Hz, 2H), 7.20-7.13 (m, 4H), 6.70 (d, \(J = 2.9\) Hz, 1H), 4.39 (d, \(J = 7.7\) Hz, 1H), 4.24-4.05 (m, 2H), 3.27 (ddd, \(J = 16.6, 8.7, 2.9\) Hz, 1H), 3.04 (dd, \(J = 16.7, 1.5\) Hz, 1H), 1.21 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ 170.1, 151.2, 145.1, 144.0, 139.9, 139.9, 129.1 (2C), 128.5 (2C), 128.4; 128.0 (2C), 127.2 (2C), 126.0, 125.8 (2C), 123.8, 123.2 (2C), 118.0, 95.3, 59.3, 36.9, 34.6, 14.3; HRMS (ESI-TOF) m/z calcd for C\(_{27}\)H\(_{25}\)NO\(_2\) [M + H\(^+\)] 396.1964, found 396.1963.

eythyl 4-methoxy-5'- (phenylamino)-2',3'-dihydro-[1,1';3',1''-terphenyl]-4'-carboxylate (3b):

\[
\text{MeO} \quad \text{NH} \quad \text{COOEt}
\]

yellow oil, 3b (0.202 g, 95%); \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 10.76 (s, 1H), 7.36 (t, \(J = 7.9\) Hz, 2H), 7.28 (t, \(J = 7.5\) Hz, 5H), 7.21 (t, \(J = 7.6\) Hz, 2H), 7.13 (dd, \(J = 11.6, 7.5\) Hz, 4H), 6.84 - 6.79 (m, 2H), 6.60 (d, \(J = 2.8\) Hz, 1H), 4.34 (d, \(J = 7.5\) Hz, 1H), 4.20 - 4.04 (m, 2H), 3.79 (s, 3H), 3.19 (ddd, \(J = 16.6, 8.6, 2.8\) Hz, 1H), 3.00 (dd, \(J = 16.6, 1.6\) Hz, 1H), 1.19 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ 170.2, 160.1, 160.0, 151.1, 147.1, 139.9, 133.9, 133.0, 131.9, 130.9, 129.9, 129.1, 127.9, 127.8, 127.5, 125.9, 125.8 (2C), 123.9, 123.1 (2C), 118.0, 95.5, 59.5, 57.9, 36.9, 36.7, 14.4; HRMS (ESI-TOF) m/z calcd for C\(_{27}\)H\(_{26}\)O\(_2\)N [M + H\(^+\)] 364.1673, found 364.1679.
151.6, 145.3, 143.7, 140.1, 132.4, 129.2 (2C), 128.1 (2C), 127.3 (2C), 127.2 (2C),
126.0, 123.8, 123.3 (2C), 116.3, 114.1 (2C), 94.8, 59.3, 55.4, 36.9, 34.5, 14.4; HRMS
(ESI-TOF) m/z calcd for C$_{28}$H$_{27}$NO$_3$ [M + H]$^+$ 426.2069, found 426.2071.

Ethyl 4-methoxy-4''-methyl-5'-{(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'}-
carboxylate (3c):

![Chemical Structure](image)
yellow solid, 3c (0.204 g, 93%), mp 110-112 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.87
(s, 1H), 7.41 (t, J = 7.9 Hz, 2H), 7.35 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 7.2 Hz, 2H),
7.22 (d, J = 7.7 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.09 (d, J = 7.9 Hz, 2H), 6.87 (d, J
= 8.9 Hz, 2H), 6.70 (d, J = 2.7 Hz, 1H), 4.41 (d, J = 7.9 Hz, 1H), 4.28 - 4.14 (m, 2H),
3.80 (s, 3H), 3.25 (ddd, J = 16.5, 8.5, 2.8 Hz, 1H), 3.07 (dd, J = 16.6, 1.4 Hz, 1H),
2.34 (s, 3H), 1.28 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.1, 160.0,
151.3, 143.6, 142.1, 140.0, 135.2, 132.2, 129.0 (2C), 128.7 (2C), 127.1 (2C), 128.1
(2C), 123.6, 123.1 (2C), 116.1, 113.9 (2C), 95.0, 59.2, 55.1, 36.3, 34.4, 20.9, 14.4;
HRMS (ESI-TOF) m/z calcd for C$_{29}$H$_{29}$NO$_3$ [M + H]$^+$ 440.2226, found 440.2227.

ethyl 4-nitro-5'-{(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'}-carboxylate (3d):

![Chemical Structure](image)
orange solid, 3d (0.110 g, 50%), mp 109-111 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.71
(s, 1H), 8.14 - 8.10 (m, 2H), 7.41 - 7.34 (m, 4H), 7.27 - 7.21 (m, 4H), 7.18 - 7.13 (m,
ethyl 4-bromo-5'-((phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3e):

yellow solid, 3e (0.142 g, 60%), mp 120-122 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.75 (s, 1H), 7.42 – 7.34 (m, 4H), 7.28 – 7.21 (m, 4H), 7.17 – 7.12 (m, 6H), 6.65 (d, $J = 2.9$ Hz, 1H), 4.36 (d, $J = 7.4$ Hz, 1H), 4.20 - 4.08 (m, 2H), 3.23 (ddd, $J = 16.6$, 8.6, 2.9 Hz, 1H), 2.94 (dd, $J = 16.6$, 1.6 Hz, 1H), 1.19 (t, $J = 7.1$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.1, 150.8, 144.7, 142.6, 139.8, 138.7, 131.7 (2C), 129.2 (2C), 128.1 (2C), 127.3 (2C), 127.2 (2C), 126.1, 123.9, 123.1 (2C), 122.5, 118.5, 95.5, 59.4, 36.7, 34.4, 14.4; HRMS (ESI-TOF) m/z calcd for C$_{27}$H$_{24}$BrNO$_2$ [M + H]$^+$ 474.1069, found 474.1040.

ethyl 4''-methyl-5'-((phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3f):
yellow solid, **3f** (0.159 g, 78%), mp 116-118 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.76 (s, 1H), 7.38 - 7.27 (m, 7H), 7.20 - 7.13 (m, 5H), 7.03 (d, $J = 7.9$ Hz, 2H), 6.68 (d, $J = 2.9$ Hz, 1H), 4.35 (t, $J = 7.0$ Hz, 1H), 4.23 - 4.07 (m, 2H), 3.23 (ddd, $J = 16.6$, 8.6, 2.9 Hz, 1H), 3.01 (dd, $J = 16.7$, 1.6 Hz, 1H), 2.29 (s, 3H), 1.22 (t, $J = 7.1$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.2, 151.0, 144.0, 141.9, 139.9, 139.9, 135.4, 129.1 (2C), 128.8 (2C), 128.5 (2C), 128.4, 127.1 (2C), 125.8 (2C), 123.7, 123.1 (2C), 118.0, 95.5, 59.4, 36.3, 34.5, 21.0, 14.4; HRMS (ESI-TOF) m/z calcd for C$_{28}$H$_{27}$NO$_2$ [M + H]$^+$ 410.2120, found 410.2119.

ethyl 3''-methyl-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (**3g**):

yellow solid, **3g** (0.176 g, 86%), mp 108-110 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.77 (s, 1H), 7.39 - 7.27 (m, 7H), 7.17 - 7.09 (m, 6H), 6.98 - 6.96 (m, 1H), 6.68 (d, $J = 2.9$ Hz, 1H), 4.34 (dd, $J = 8.6$, 1.4 Hz, 1H), 4.23 - 4.07 (m, 2H), 3.25 (ddd, $J = 16.7$, 8.7, 2.9 Hz, 1H), 3.02 (dd, $J = 16.7$, 1.6 Hz, 1H), 2.30 (s, 3H), 1.22 (t, $J = 7.1$ Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.2, 151.1, 145.0, 144.0, 139.9, 139.9, 137.4, 129.1 (2C), 128.5 (2C), 128.4, 128.1, 127.9, 126.8, 125.8 (2C), 124.3, 123.7, 123.1 (2C),
ethyl 2''-methyl-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3h):

yellow solid, 3h (0.166 g, 81%), mp 115-117 °C; 1H NMR (500 MHz, CDCl₃) δ 10.76 (s, 1H), 7.37 (t, J = 7.9 Hz, 2H), 7.28 - 7.25 (m, 5H), 7.19 - 7.13 (m, 5H), 7.06 - 7.01 (m, 2H), 6.71 (d, J = 2.9 Hz, 1H), 4.61 (dd, J = 9.4, 1.2 Hz, 1H), 4.16 - 3.96 (m, 2H), 3.25 (ddd, J = 16.5, 9.5, 2.9 Hz, 1H), 2.78 (dd, J = 16.6, 1.4 Hz, 1H), 2.53 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl₃) δ 170.0, 151.3, 143.6, 142.6, 140.1, 139.9, 134.6, 130.1, 129.1 (2C), 128.5 (2C), 128.4, 127.0, 125.9, 125.8 (2C), 128.7, 123.6, 123.0 (2C), 118.2, 95.6, 59.3, 33.0, 32.4, 19.5, 14.2; HRMS (ESI-TOF) m/z calcd for C₂₈H₂₇NO₂ [M + H]+ 410.2120, found 410.2123.

ethyl 4''-methoxy-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3i):
yellow solid, 3i (0.155 g, 73%), mp 104-106 °C; \(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 10.75 (s, 1H), 7.38 - 7.35 (m, 2H), 7.32 - 7.27 (m, 5H), 7.23 - 7.21 (m, 2H), 7.16 - 7.14 (m, 3H), 6.78 (d, \(J = 8.7\) Hz, 2H), 6.68 (d, \(J = 2.9\) Hz, 1H), 4.33 (d, \(J = 7.4\) Hz, 1H), 4.22 - 4.08 (m, 2H), 3.76 (s, 3H), 3.62 (d, \(J = 7.4\) Hz, 1H), 2.99 (dd, \(J = 16.6, 1.6\) Hz, 1H), 1.22 (t, \(J = 7.1\) Hz, 3H); \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) δ 170.2, 157.9, 150.9, 144.0, 139.9, 137.1, 129.1 (2C), 128.7 (2C), 128.5, 128.4, 128.2 (2C), 125.8 (2C), 123.7, 123.1 (2C), 118.0, 113.4 (2C), 95.6, 59.3, 55.1, 35.9, 34.7, 14.4; HRMS (ESI-TOF) m/z calcd for C\(_{28}\)H\(_{27}\)NO\(_3\) [M + H]\(^+\) 426.2069, found 426.2070.

ethyl 4''-nitro-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3j):

\[
\begin{align*}
&\text{yellow oil, 3j (0.158 g, 72%); } ^1\text{H NMR (500 MHz, CDCl}_3\text{) } \delta 10.79 (s, 1H), 8.07 (d, } J = 8.8\text{ Hz, 2H), 7.44 - 7.40 (m, 2H), 7.38 - 7.33 (m, 2H), 7.28 - 7.23 (m, 5H), 7.16 - 7.12 (m, 3H), 6.66 (d, } J = 2.9\text{ Hz, 1H), 4.46 - 4.39 (m, 1H), 4.17 - 4.02 (m, 2H), 3.28 (ddd, } J = 16.7, 8.8, 2.9\text{ Hz, 1H), 2.95 (dd, } J = 16.8, 1.6\text{ Hz, 1H), 1.15 (t, } J = 7.1\text{ Hz, 3H); } ^{13}\text{C NMR (126 MHz, CDCl}_3\text{) } \delta 169.7, 153.2, 151.7, 146.6, 143.8, 139.4, 139.3, 129.2 (2C), 128.9, 128.7 (2C), 128.1 (2C), 125.7 (2C), 124.3, 123.5 (2C), 117.9, 93.3, 59.5, 37.1, 34.1, 14.4; \text{ HRMS (ESI-TOF) m/z calcd for } C_{27}H_{24}N_2O_4 \text{ [M + H]}^+ 441.1814, \text{ found 441.1819.}
\end{align*}
\]

ethyl 5-(furan-2-yl)-3-(phenylamino)-1,6-dihydro-[1,1'-biphenyl]-2-carboxylate (3k):
yellow solid, **3k** (0.146 g, 76%), mp 147-149 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.77 (s, 1H), 7.38 - 7.34 (m, 3H), 7.26 - 7.20 (m, 4H), 7.15 - 7.122 (m, 4H), 6.80 (d, J = 2.8 Hz, 1H), 6.42 (d, J = 3.4 Hz, 1H), 6.37 (dd, J = 3.4, 1.8 Hz, 1H), 4.32 (d, J = 7.4 Hz, 1H), 4.18 - 4.04 (m, 2H), 3.10 (ddd, J = 16.5, 8.6, 2.8 Hz, 1H), 2.85 (dd, J = 16.5, 1.6 Hz, 1H), 1.18 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.0, 153.3, 151.2, 145.0, 143.6, 139.9, 132.4, 129.1 (2C), 128.1 (2C), 127.3 (2C), 126.0, 123.8, 123.3 (2C), 114.2, 111.8, 109.8, 94.9, 59.3, 36.3, 31.9, 14.4; HRMS (ESI-TOF) m/z calcd for C$_{25}$H$_{23}$NO$_3$ [M + H]$^+$ 386.1756, found 386.1757.

ethyl 5-methyl-3-(phenylamino)-1,6-dihydro-[1,1'-biphenyl]-2-carboxylate (3l):

![Chemical structure](image)

yellow solid, **3l** (0.080 g, 48%), mp 102-104 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.75 (s, 1H), 7.46 - 7.30 (m, 3H), 7.27 - 7.23 (m, 3H), 7.22 - 7.05 (m, 4H), 6.11 (dd, J = 2.6, 1.4 Hz, 1H), 4.18 (d, J = 7.8 Hz, 1H), 4.15 - 4.03 (m, 2H), 3.08 - 2.77 (m, 1H), 2.33 (dd, J = 17.0, 1.3 Hz, 1H), 1.77 (s, 3H), 1.15 (t, J = 7.1 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.3, 151.8, 145.9, 145.4, 139.8, 129.0 (2C), 128.0 (2C), 127.2 (2C), 125.9, 123.8, 123.6 (2C), 117.0, 93.2, 59.1, 37.2, 36.7, 24.4, 14.4; HRMS (ESI-TOF) m/z calcd for C$_{22}$H$_{23}$NO$_2$ [M + H]$^+$ 334.1807, found 334.1813.
ethyl 3-((4-methoxyphenyl)amino)-5-methyl-1,6-dihydro-[1,1'-biphenyl]-2-carboxylate (3m):

![Chemical structure of 3m]

yellow oil, 3m (0.080 g, 44%); ¹H NMR (500 MHz, CDCl₃) δ 10.61 (s, 1H), 7.27 - 7.20 (m, 4H), 7.19 - 7.13 (m, 1H), 7.09 - 7.00 (m, 2H), 6.93 - 6.85 (m, 2H), 5.98 (dd, J = 2.6, 1.4 Hz, 1H), 4.16 (d, J = 7.9 Hz, 1H), 4.12 - 4.02 (m, 2H), 3.83 (s, 3H), 2.93 - 2.82 (m, 1H), 2.31 (dd, J = 17.0, 1.3 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.4, 156.8, 152.8, 146.3, 145.7, 132.6, 127.9 (2C), 127.2 (2C), 126.0 (2C), 125.8, 116.8, 114.2 (2C), 91.5, 59.0, 55.5, 37.4, 36.8, 24.4, 14.4; HRMS (ESI-TOF) m/z calcd for C₂₃H₂₅NO₃ [M + H]^+ 364.1913, found 364.1913.

eythyl 5'-(cyclohexylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3n):

![Chemical structure of 3n]

eyellow oil, 3n (0.146 g, 73%); ¹H NMR (500 MHz, CDCl₃) δ 9.17 (d, J = 8.0 Hz, 1H), 7.39 - 7.28 (m, 7H), 7.24 - 7.13 (m, 3H), 6.66 (d, J = 2.8 Hz, 1H), 4.31 (d, J = 7.4 Hz, 1H), 4.18 - 4.01 (m, 2H), 3.67 - 3.57 (m, 1H), 3.19 (ddd, J = 16.8, 8.5, 2.9 Hz, 1H), 2.95 (dd, J = 16.8, 1.6 Hz, 1H), 2.11 - 1.63 (m, 5H), 1.53 - 1.30 (m, 5H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.3, 154.2, 146.0, 145.9, 140.5, 128.5 (2C), 128.4, 127.8 (2C), 127.2 (2C), 125.8 (2C), 125.7, 116.5, 89.4, 58.6, 51.0, 36.7,
35.2, 34.6, 34.2, 25.5, 24.7, 24.6, 14.5; HRMS (ESI-TOF) m/z calcd for C_{27}H_{31}NO_{2} [M + H]^+ 402.2433, found 402.2433.

ethyl 5'-(butlamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (3o):

![Chemical structure](image)

yellow oil, 3o (0.090 g, 48%); \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 9.06 (s, 1H), 7.45 – 7.30 (m, 6H), 7.27 – 7.10 (m, 4H), 6.64 (d, \(J = 2.9\) Hz, 1H), 4.28 (d, \(J = 7.8\) Hz, 1H), 4.14 – 4.03 (m, 2H), 3.48 - 3.33 (m, 2H), 3.17 (ddd, \(J = 16.8, 8.4, 2.9\) Hz, 1H), 2.95 (dd, \(J = 16.8, 1.5\) Hz, 1H), 1.71 – 1.63 (m, 2H), 1.54 - 1.45 (m, 2H), 1.17 (t, \(J = 7.1\) Hz, 3H), 1.00 (t, \(J = 7.3\) Hz, 3H); \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 170.4, 155.1, 146.3, 145.9, 140.4, 128.5 (2C), 128.5, 127.9 (2C), 127.2 (2C), 125.8 (2C), 125.7, 116.3, 89.4, 58.7, 42.7, 36.8, 35.2, 32.8, 20.2, 14.5, 13.9; HRMS (ESI-TOF) m/z calcd for C_{25}H_{29}NO_{2} [M + H]^+ 376.2277, found 376.2278.

1-(5'- (phenylamino)-2',3'-dihydro-[1,1':3',3''-terphenyl]-4'-yl)ethanone (3p):

![Chemical structure](image)

eyellow solid, 3p (0.102 g, 56%); \(^{1}H\) NMR (500 MHz, CDCl\(_3\)) \(\delta\) 13.20 (s, 1H), 7.42 - 7.38 (m, 2H), 7.29 - 7.17 (m, 13H), 6.71 (d, \(J = 2.9\) Hz, 1H), 4.26 (dd, \(J = 7.9, 1.3\) Hz, 1H), 3.31 (ddd, \(J = 16.4, 8.1, 2.9\) Hz, 1H), 3.07 (dd, \(J = 16.4, 1.7\) Hz, 1H), 2.12 (s, 3H); \(^{13}C\) NMR (126 MHz, CDCl\(_3\)) \(\delta\) 197.1, 153.0, 145.4, 143.8, 139.6,
139.0, 129.1 (2C), 128.7, 128.5 (2C), 128.3 (2C), 127.5 (2C), 126.4, 125.8 (2C), 124.8, 124.2 (2C), 117.6, 103.0, 39.1, 35.7, 27.7; HRMS (ESI-TOF) m/z calcd for C_{26}H_{23}NO [M + H]^+ 366.1858, found 366.1862.

1-(3''-methyl-5''-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-yl)ethanone (3q):

\[
\begin{align*}
\text{yellow oil, 3q (0.114 g, 60%); } & \\
\text{1H NMR (500 MHz, CDCl}_3\text{)} & \delta 13.19 (s, 1H), 7.42 - 7.38 (m, 2H), 7.28 - 7.07 (m, 12H), 6.71 (d, J = 2.8 Hz, 1H), 4.22 (d, J = 7.2 Hz, 1H), 3.29 (ddd, J = 16.4, 8.2, 2.8 Hz, 1H), 3.06 (dd, J = 16.4, 1.6 Hz, 1H), 2.31 (s, 3H), 2.11 (s, 3H); \text{13C NMR (126 MHz, CDCl}_3\text{)} \delta 197.2, 153.0, 145.4, 143.8, 139.6, 139.06, 137.8, 129.1 (2C), 128.6, 128.5 (2C), 128.2 (2C), 127.2, 125.8 (2C), 124.7, 124.6, 124.2 (2C), 117.6, 103.0, 39.0, 35.7, 27.7, 21.5; HRMS (ESI-TOF) m/z calcd for C_{27}H_{25}NO [M + H]^+ 380.2014, found 380.2012.
\end{align*}
\]

1-(5-(furan-2-yl)-3-(phenylamino)-1,6-dihydro-[1,1'-biphenyl]-2-yl)ethanone (3r):

\[
\begin{align*}
\text{yellow oil, 3r (0.115 g, 65%); } & \\
\text{1H NMR (500 MHz, CDCl}_3\text{)} \delta 13.25 (s, 1H), 7.42 - 7.38 (m, 2H), 7.33 (d, J = 1.6 Hz, 1H), 7.27 - 7.15 (m, 8H), 6.84 (d, J = 2.7 Hz, 1H), 6.42 (d, J = 3.4 Hz, 1H), 6.35 (dd, J = 3.4, 1.8 Hz, 1H), 4.22 (dd, J = 8.0, 1.4 Hz, 1H), 3.16 (ddd, J = 16.3, 8.0, 2.7 Hz, 1H), 2.90 (dd, J = 16.3, 1.6 Hz, 1H), 2.09 (s, 3H); \text{13C NMR (126 MHz, CDCl}_3\text{)} \delta 196.6, 153.2, 153.0, 143.9, 143.8, 139.0, 133.5, 129.1
\end{align*}
\]
ethyl 6'-methyl-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (5a):

ethyl 4-methoxy-6'-methyl-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (5b):
Hz, 1H), 1.62 (d, J = 2.4 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.3, 158.7, 156.1, 143.1, 142.9, 141.4, 133.8, 129.4 (2C), 129.1 (2C), 128.1 (2C), 127.5 (2C), 126.4, 126.2, 122.8, 121.0 (2C), 113.4 (2C), 102.1, 55.2, 51.2, 39.5, 36.8, 17.0; HRMS (ESI-TOF) m/z calcd for C$_{28}$H$_{27}$NO$_3$ [M + H]$^+$ 426.2069, found 426.2095.

ethyl 6'-methyl-4-nitro-5'-(phenylamino)-2',3'-dihydro-[1,1':3',1''-terphenyl]-4'-carboxylate (5c):

![Chemical Structure](image)

yellow solid, 5c (0.161 g, 73%), mp 128-130 °C; 1H NMR (500 MHz, CDCl$_3$) δ 10.35 (s, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.27 - 7.21 (m, 4H), 7.18 - 7.13 (m, 3H), 7.02 - 6.94 (m, 3H), 6.67 (d, J = 8.8 Hz, 2H), 4.22 (d, J = 5.6 Hz, 1H), 3.58 (s, 3H), 3.17 - 3.02 (m, 1H), 2.59 (dd, J = 16.1, 1.6 Hz, 1H), 1.45 (d, J = 2.4 Hz, 3H); 13C NMR (126 MHz, CDCl$_3$) δ 170.1, 155.0, 148.5, 146.7, 142.8, 142.1, 139.0, 129.4, 129.3 (2C), 128.8 (2C), 128.4 (2C), 127.5 (2C), 126.6, 123.4 (2C), 123.2, 121.0 (2C), 103.1, 51.4, 39.2, 36.8, 16.9; HRMS (ESI-TOF) m/z calcd for C$_{29}$H$_{26}$N$_2$O$_4$ [M + H]$^+$ 441.1814, found 441.1807.

S15
5 Copies of Product NMR Spectra
| f1 (ppm) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 | 8.0 | 8.5 | 9.0 | 9.5 | 10.0 | 10.5 | 11.0 | 11.5 | 12.0 |
|----------|

3k

3k
<table>
<thead>
<tr>
<th>f1 (ppm)</th>
<th>0.94</th>
<th>0.99</th>
<th>2.04</th>
<th>2.31</th>
<th>0.91</th>
<th>0.91</th>
<th>2.10</th>
<th>1.15</th>
<th>5.27</th>
<th>0.92</th>
<th>0.88</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3.00</th>
<th>2.85</th>
<th>2.02</th>
<th>2.08</th>
<th>0.94</th>
<th>0.99</th>
<th>2.04</th>
<th>2.31</th>
<th>0.91</th>
<th>0.91</th>
<th>2.10</th>
<th>1.15</th>
<th>5.27</th>
<th>0.92</th>
<th>0.88</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

	0.983	0.997	1.012	1.151	1.165	1.179	1.471	1.485	1.501	1.516	1.663	1.678	1.693	2.928	2.931	

	14.510	20.151	32.763	35.153	36.748	42.690	58.680	76.777	77.031	77.285	89.369	116.274	125.732	125.842	127.248	127.869	

	13.862	14.510	20.151	32.763	35.153	36.748	42.690	58.680	76.777	77.031	77.285	89.369	116.274	125.732	125.842	127.248	127.869	
Reference
