Cu-Catalyzed Aerobic Oxygenation of 2-Phenoxyacetophenones to AlkyloxyAcetophenones

Xinwei Liu, Huanjun Xu, Zhishuang Ma, Hongye Zhang, Cailing Wu and Zhimin Liu*

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
E-mail: liuzm@iccas.ac.cn

Contents
1. General Experimental Methods...S2
2. Additional Screening of Reaction Conditions, Table S1-S3......................................S3
3. Control Experiments, Figure S1...S5
4. Gas Chromatograph, Figure S2-S3...S6
5. Radical Trapping Experiments, Scheme S1...S8
6. EPR Spectra, Figure S4..S9
7. Cu2p XPS spectrum of therecovered [Cu] catalyst, Figure S5.................................S10
8. ESI-MS Spectrum of Compounds, Figure S6..S11
9. NMR Data for Starting Materials..S12
10. NMR Data for the Products...S14
11. ¹H and ¹³C NMR Spectra of Compounds, Figure S7-24...S16
12. Reference...S34
1. Experimental section.

Materials

All reagents and solvents were purchased from Acros, Tci, Alfa-Aesar, Sigma-Aldrich and Beijing Chemical Company, Ltd. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Lignin model compounds were prepared following procedures reported in the literature with some modifications.

Instrumentation

Products were purified by flash chromatography on silica gel. Electron Impact Mass (EI MS) Spectra were performed on DFS Mass Spectrometer. Analysis of crude reaction mixture was performed on an Agilent 7890BGC System with a HP-INNOWAX capillary column (30 m × 0.25 mm × 0.25 μm) and an FID detector. The following GC temperature program was used: 50 °C hold for 2 min, ramp 20 °C/min to a final temperature of 260 °C, and hold for 8 min. Nitrogen was used as a carrier gas. The injector temperature was held at 250 °C. GC-MS analysis was carried out on a SHIMADZU GCMS-QP2010 with a DB-5 capillary column (30 m × 0.25 mm × 0.25 μm). 1H NMR spectra were recorded in CDCl3 or DMSO using internal reference (the residue proton peaks of CHCl3 at 7.26 ppm and DMSO at 2.5 ppm) on Bruker 400 spectrometer. Liquid 13C NMR was recorded at 100.6 MHz in CDCl3 using residual CHCl3 as internal reference (the residue proton peaks of CHCl3 at 77.02 ppm and DMSO at 40.03 ppm). X-Ray photoelectron spectroscopy (XPS) data were collected on an ESCALab220i-XL electron spectrometer from VG Scientific using 300 W Al-Kα radiation. The base pressure was about 3 × 10⁻⁹ mbar. The binding energies were referenced to the C1s line at 284.8 eV from adventitious carbon.

Catalytic reaction

Typically, substrate (0.5 mmol), alcohol (1 mL), catalyst (0.075 mmol), ligand (0.25 mmol), additive (0.5 mmol) were introduced into a 5 mL glass reactor. The reaction mixture was heated to the designated temperature in an oil bath and kept at that temperature for desired reaction time. After that, an aqueous solution of HCl (10 mL, 1.0 M) was added to the reaction system, and then 3 * 10 mL CH2Cl2 was added to extract organic compounds. The organic phase with n-dodecane as an internal standard was analysed by GC, affording the GC product yield. Then, the organic phase was purified by column chromatography over silica gel to obtain the desired product (eluent: petroleum ether/ethyl acetate = 100/1), and the product yield was denoted as isolated yield. The isolated products were identified by NMR.
2. Additionalscreening of reaction conditions

Table S1. Evaluation of Cu catalysts

<table>
<thead>
<tr>
<th>Entry</th>
<th>[Cu]</th>
<th>Yield (%)(^b)</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3a</td>
<td>4a</td>
</tr>
<tr>
<td>1</td>
<td>CuBr(_2)</td>
<td>36.2</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td>CuBr</td>
<td>44.9</td>
<td>4.3</td>
</tr>
<tr>
<td>3</td>
<td>CuCl(_2)</td>
<td>36.8</td>
<td>62.7</td>
</tr>
<tr>
<td>4</td>
<td>CuCl</td>
<td>30.1</td>
<td>23.4</td>
</tr>
<tr>
<td>5</td>
<td>CuO</td>
<td>11.2</td>
<td>38.5</td>
</tr>
<tr>
<td>6</td>
<td>Cu(_2)O</td>
<td>24.1</td>
<td>28.4</td>
</tr>
<tr>
<td>7</td>
<td>CuI</td>
<td>15.7</td>
<td>8.8</td>
</tr>
<tr>
<td>8</td>
<td>CuOAc</td>
<td>13.5</td>
<td>21.4</td>
</tr>
<tr>
<td>9</td>
<td>CuCl(_2)·2H(_2)O</td>
<td>29.4</td>
<td>48.7</td>
</tr>
</tbody>
</table>

\(^a\)Reaction conditions: 1a (0.5mmol), 2a (1.0mL), Cu salts (0.15equiv.), pyridine (0.5 equiv.), BF\(_3\)·Et\(_2\)O (1.0 equiv.). \(^b\)GC yield.
Table S2. The effects of CuCl$_2$ loadinga

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>CuCl$_2$(x eq)</th>
<th>Yield (%)b</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3a</td>
<td>4a</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>9.1</td>
<td>6.3</td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td>29.4</td>
<td>44.1</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>36.8</td>
<td>62.7</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.5mmol), 2a (1.0mL), CuCl$_2$, Pyridine (0.5equiv.), BF$_3$•Et$_2$O (1.0equiv.). bGC yield.

Table S3. The effects of pyridine loadinga

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Py(x eq)</th>
<th>Yield (%)b</th>
<th>Conversion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3a</td>
<td>4a</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>39.4</td>
<td>36.4</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>41.3</td>
<td>44.0</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>36.8</td>
<td>62.7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>38.4</td>
<td>47.7</td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.5mmol), 2a (1.0mL), CuCl$_2$ (0.15equiv.), pyridine, BF$_3$•Et$_2$O (1.0equiv.). bGC yield.
3. Control experiments

Some potential intermediates were subjected to the reaction system.

When we shorten the reaction time, we could make the reaction stay at incomplete stage. We found I (phenylglyoxal) was an intermediate through GC-MS. (Figure S1)

And D could further reacted to form 4a.

Figure S1 GC-MS of the reaction solution. Conditions: 1a (0.5 mmol), 2a (1 ml), CuCl$_2$ (0.075 mmol), Py (0.25 mmol), BF$_3$·Et$_2$O (0.5 mmol), 12h.
4. Detection by GC

Figure S2 GC spectrum of the liquid phase of the reaction solution. Conditions: 1a (0.5 mmol), 2a (1 ml), CuCl$_2$ (0.075 mmol), Py (0.25 mmol) and BF$_3$·Et$_2$O (0.5 mmol), 24h.
Tail gas detection by GC

Under the environment of pure oxygen, tail gas was collected and detected by GC.

Figure S3 GC profile of the gas phase of the reaction solution. Conditions: 1a (0.5 mmol), 2a (1 ml), CuCl₂ (0.075 mmol), Py (0.25 mmol) and BF₃·Et₂O (0.5 mmol), 24h.
5. Radical trapping experiments

Scheme S1 Control experiments with TEMPO
6. EPR spectrum

Figure S4 EPR spectrum of the reaction solution. Reaction conditions: 1a (0.5 mmol), 2a (1 ml), CuCl$_2$ (0.075 mmol), Py (0.25 mmol), BF$_3$·Et$_2$O, methanol, 12h.
7. Cu2p XPS spectrum of the recovered Cu catalyst

Figure S5 Cu2p XPS spectrum of the recovered Cu catalyst.
8. ESI-MS spectrum charts of compounds

2,2-dimethoxyacetophenone

![ESI-MS spectrum of 2,2-dimethoxyacetophenone](image)

Figure S6 ESI-MS spectrum of 2,2-dimethoxyacetophenone.
9. NMR data for starting materials

2-Aryloxy-1-acetophenone derivatives were prepared based on the reported procedures, which were examined by NMR analysis. The NMR data for these compounds are listed as follows.

2-phenyloxy-acetophenone

\[
\begin{align*}
\text{H} & \quad \text{NMR} (400 \text{ MHz, CDCl}_3) \; \delta \; 8.08 - 7.94 (m, 1H), 7.62 (t, J = 7.4 \text{ Hz}, 1H), 7.50 (t, J = 7.7 \text{ Hz}, 1H), 7.35 - 7.19 (m, 2H), 6.98 (dd, J = 18.9, 7.7 \text{ Hz}, 1H), 5.28 (s, 1H).
\end{align*}
\]

\[
\begin{align*}
\text{C} & \quad \text{NMR} (101 \text{ MHz, CDCl}_3) \; \delta \; 194.55 (s), 158.03 (s), 134.65 (s), 133.82 (s), 129.56 (s), 128.15 (s), 121.65 (s), 114.83 (s), 70.84 (s).
\end{align*}
\]

2-(4-methoxyphenyl)oxy-acetophenone

\[
\begin{align*}
\text{H} & \quad \text{NMR} (400 \text{ MHz, CDCl}_3) \; \delta \; 8.01 (d, J = 7.3 \text{ Hz}, 2H), 7.62 (t, J = 7.4 \text{ Hz}, 1H), 7.50 (t, J = 7.7 \text{ Hz}, 2H), 7.36 - 7.23 (m, 5H), 6.98 (dd, J = 19.0, 7.7 \text{ Hz}, 3H), 5.28 (s, 2H).
\end{align*}
\]

\[
\begin{align*}
\text{C} & \quad \text{NMR} (101 \text{ MHz, CDCl}_3) \; \delta \; 194.74 (s), 154.38 (s), 152.14 (s), 134.55 (s), 133.68 (s), 128.69 (s), 128.00 (s), 115.89 (s), 114.60 (s), 77.32 (s), 77.00 (s), 76.68 (s), 71.63 (s), 55.55 (s).
\end{align*}
\]

2-(3-methoxyphenyl)oxy-acetophenone

\[
\begin{align*}
\text{H} & \quad \text{NMR} (400 \text{ MHz, CDCl}_3) \; \delta \; 8.00 (d, J = 7.3 \text{ Hz}, 4H), 7.62 (t, J = 7.4 \text{ Hz}, 3H), 7.50 (t, J = 7.7 \text{ Hz}, 5H), 7.18 (t, J = 8.5 \text{ Hz}, 6H), 6.66 - 6.47 (m, 6H), 5.26 (s, 4H), 3.78 (s, 6H).
\end{align*}
\]

\[
\begin{align*}
\text{C} & \quad \text{NMR} (101 \text{ MHz, CDCl}_3) \; \delta \; 194.28 (s), 160.82 (s), 159.17 (s), 134.52 (s), 133.77 (s), 129.92 (s), 128.75 (s), 128.03 (s), 125.10 (s), 107.27 (s), 106.55 (s), 101.46 (s), 77.32 (s), 77.00 (s), 76.68 (s), 70.69 (s), 55.21 (s).
\end{align*}
\]

2-(4-fluor-phenyl)oxy-acetophenone

\[
\begin{align*}
\text{H} & \quad \text{NMR} (400 \text{ MHz, CDCl}_3) \; \delta \; 7.99 (d, J = 7.4 \text{ Hz}, 2H), 7.63 (t, J = 7.4 \text{ Hz}, 1H), 7.51 (t, J = 7.7 \text{ Hz}, 2H), 6.92 (ddd, J = 12.0, 9.2, 6.7 \text{ Hz}, 4H), 5.25 (s, 2H).
\end{align*}
\]

\[
\begin{align*}
\text{C} & \quad \text{NMR} (101 \text{ MHz, CDCl}_3) \; \delta \; 194.30 (s), 158.86 (s), 156.48 (s), 154.12 (d, J = 2.1 \text{ Hz}), 134.41 (s), 133.91 (s), 128.82 (s), 128.01 (s), 115.94 (dd, J = 15.7, 7.5 \text{ Hz}), 77.32 (s), 77.00 (s), 76.68 (s), 71.37 (s).
\end{align*}
\]

2-(4-bromo-phenyl)oxy-acetophenone
1H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 5.17 (s, 2H).

13C NMR (101 MHz, CDCl₃) δ 193.96 (s), 157.13 (s), 134.37 (s), 133.97 (s), 132.36 (s), 128.85 (s), 128.03 (s), 116.60 (s), 113.87 (s), 70.82 (s).

2-phenyloxy-3’-methoxy acetophenone

1H NMR (400 MHz, CDCl₃) δ 7.63 – 7.50 (m, 2H), 7.40 (t, J = 7.9 Hz, 1H), 7.28 (dd, J = 14.6, 6.4 Hz, 2H), 7.16 (dd, J = 8.2, 2.4 Hz, 1H), 7.05 – 6.89 (m, 3H), 5.26 (s, 2H), 3.86 (s, 3H).

13C NMR (101 MHz, CDCl₃) δ 194.21 (s), 159.90 (s), 157.96 (s), 135.80 (s), 129.75 (s), 129.49 (s), 121.56 (s), 120.48 (s), 120.25 (s), 114.76 (s), 112.37 (s), 77.32 (s), 77.00 (s), 76.68 (s), 70.74 (s), 55.39 (s).

2-(3-methoxyphenyl)oxy-3’-methoxyacetophenone

1H NMR (400 MHz, CDCl₃) δ 7.52 – 7.39 (m, 2H), 7.30 (t, J = 7.9 Hz, 1H), 7.13 – 7.00 (m, 2H), 6.50 – 6.37 (m, 3H), 5.14 (s, 2H), 3.76 (s, 3H), 3.68 (s, 3H).

13C NMR (101 MHz, CDCl₃) δ 194.06 (s), 160.85 (s), 159.93 (s), 159.21 (s), 135.83 (s), 129.84 (d, J = 16.3 Hz), 120.48 (s), 120.27 (s), 112.39 (s), 107.29 (s), 106.60 (s), 101.51 (s), 77.26 (d, J = 11.7 Hz), 77.00 (s), 76.68 (s), 70.77 (s), 55.33 (d, J = 18.7 Hz).
10. NMR data for the products

2,2-Dimethoxyacetophenone

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta 8.02 (d, J = 7.6 \text{ Hz}, 2\text{H}), 7.47 (t, J = 7.4 \text{ Hz}, 1\text{H}), 7.36 (d, J = 7.7 \text{ Hz}, 2\text{H}), 5.14 (s, 1\text{H}), 3.37 (s, 6\text{H}). \\
\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 193.22 (s), 133.47 (s), 129.34 (s), 128.29 (s), 103.13 (s), 54.36 (s).
\end{align*}
\]

2,2-Dimethoxy-1-(3-methoxyphenyl)

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta 7.61 (d, J = 7.7 \text{ Hz}, 1\text{H}), 7.51 (s, 1\text{H}), 7.25 (t, J = 8.0 \text{ Hz}, 1\text{H}), 7.01 (dd, J = 8.2, 1.8 \text{ Hz}, 1\text{H}), 5.12 (s, 1\text{H}), 3.72 (s, 3\text{H}), 3.36 (s, 6\text{H}). \\
\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 192.90 (s), 159.41 (s), 134.90 (s), 129.22 (s), 121.89 (s), 119.88 (s), 113.37 (s), 102.93 (s), 55.10 (s), 54.23 (s).
\end{align*}
\]

Benzoic acid methyl ester

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta 8.08 – 7.99 (m, 2\text{H}), 7.56 (t, J = 7.4 \text{ Hz}, 1\text{H}), 7.44 (t, J = 7.6 \text{ Hz}, 2\text{H}), 3.92 (s, 3\text{H}). \\
\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 167.13 (s), 132.91 (s), 129.59 (s), 128.37 (s), 125.09 (s), 52.09 (s).
\end{align*}
\]

Phenol

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta 7.25 (dd, J = 9.6, 6.2 \text{ Hz}, 3\text{H}), 6.94 (t, J = 7.4 \text{ Hz}, 1\text{H}), 6.84 (d, J = 7.7 \text{ Hz}, 2\text{H}), 5.35 (s, 1\text{H}). \\
\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 155.46 (s), 129.67 (s), 120.81 (s), 115.28 (s).
\end{align*}
\]

3-Methoxyphenol

\[
\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{) } & \delta 7.14 (t, J = 8.0 \text{ Hz}, 1\text{H}), 6.51 (dd, J = 7.5, 1.4 \text{ Hz}, 1\text{H}), 6.43 (dd, J = 8.4, 1.3 \text{ Hz}, 2\text{H}), 4.77 (s, 1\text{H}), 3.78 (s, 3\text{H}). \\
\text{C NMR (101 MHz, CDCl}_3\text{) } & \delta 160.94 (s), 156.69 (s), 130.15 (s), 107.81 (s), 106.49 (s), 101.56 (s), 77.26 (d, J = 11.5 \text{ Hz}), 77.00 (s), 76.68 (s), 55.27 (s), -0.03 (s).
\end{align*}
\]
4-methoxyphenol

\[\begin{array}{c}
\text{O} \\
\text{OH}
\end{array} \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.89 – 6.67 (m, 1H), 3.76 (s, 1H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 153.86 (s), 149.41 (s), 116.02 (s), 114.85 (s), 55.78 (s).

4-fluorophenol

\[\begin{array}{c}
\text{F} \\
\text{OH}
\end{array} \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 6.93 (dd, \(J\) = 11.9, 5.4 Hz, 1H), 6.85 – 6.68 (m, 1H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 158.51 (s), 156.14 (s), 151.44 (d, \(J\) = 2.2 Hz), 116.37 – 116.00 (m), 115.87 (s).

4-bromophenol

\[\begin{array}{c}
\text{Br} \\
\text{OH}
\end{array} \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.33 (d, \(J\) = 8.8 Hz, 2H), 6.72 (d, \(J\) = 8.9 Hz, 1H), 5.35 (s, 1H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 154.59 (s), 132.48 (s), 117.19 (s), 112.93 (s).

2,2-diethoxyacetophenone

\[\begin{array}{c}
\text{O} \\
\text{O} \\
\text{O}
\end{array} \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.23 – 8.10 (m, 2H), 7.56 (t, \(J\) = 7.4 Hz, 1H), 7.45 (t, \(J\) = 7.6 Hz, 2H), 5.28 (s, 1H), 3.88 – 3.52 (m, 4H), 1.25 (t, \(J\) = 7.1 Hz, 6H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 194.04 (s), 133.81 (s), 133.41 (s), 129.73 (s), 128.31 (s), 102.48 (s), 63.20 (s), 15.18 (s).

3-methoxybenzoate

\[\begin{array}{c}
\text{O} \\
\text{O}
\end{array} \]

\(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.67 – 7.60 (m, 1H), 7.56 (dd, \(J\) = 2.5, 1.5 Hz, 1H), 7.34 (t, \(J\) = 8.0 Hz, 1H), 7.10 (ddd, \(J\) = 8.2, 2.7, 0.8 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H).
\(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 166.95 (s), 159.57 (s), 131.47 (s), 129.35 (s), 121.97 (s), 119.48 (s), 113.98 (s), 55.41 (s), 52.12 (s).

Ethyl benzoate

\[\begin{array}{c}
\text{O} \\
\text{O}
\end{array} \]
1H NMR (400 MHz, CDCl$_3$) δ 8.10 – 8.01 (m, 2H), 7.62 – 7.50 (m, 1H), 7.42 (dd, $J = 10.6, 4.7$ Hz, 2H), 4.38 (q, $J = 7.1$ Hz, 2H), 1.39 (t, $J = 7.1$ Hz, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 166.55 (s), 132.71 (s), 130.51 (s), 129.47 (s), 128.23 (s), 60.85 (s), 14.26 (s).

11. 1H NMR and 13C NMR spectra of compounds

![Image of NMR spectra](image-url)

Figure S71H (top) and 13C (bottom) NMR spectra of 2-phenyloxy-acetophenone
Figure S8^1^H (top) and ^1^3^C (bottom) NMR spectra of 2-(4-methoxyphenyl)oxy-acetophenon
Figure S91H (top) and 13C (bottom) NMR spectra of 2-(3-methoxyphenyl)oxy-acetophenon
Figure S101H (top) and 13C (bottom) NMR spectra of 2-(4-fluor-phenyl)oxy-acetophenon
Figure S111H (top) and 13C (bottom) NMR spectra of 2-(4-bromo-phenyl)oxy-acetophenon
Figure S12 1H (top) and 13C (bottom) NMR spectra of 2-phenyloxy-3'-methoxy acetophenone
Figure S13 1H (top) and 13C (bottom) NMR spectra of 2-(3-methoxyphenyl)oxy-3’-methoxyacetophenone
Figure S14 1H (top) and 13C (bottom) NMR spectra of the isolated product 2,2-dimethoxyacetophenone
Figure S15 1H (top) and 13C (bottom) NMR spectra of the isolated product 2,2-dimethoxy-1-(3-methoxyphenyl)
Figure S161H (top) and 13C (bottom) NMR spectra of the isolated benzoic acid methyl ester
Figure S171H (top) and 13C (bottom) NMR spectra of the isolated product Phenol
Figure S181H (top) and 13C (bottom) NMR spectra of the isolated product 3-methoxyphenol
Figure S191H (top) and 13C (bottom) NMR spectra of the isolated product 4-methoxyphenol
Figure S201H (top) and 13C (bottom) NMR spectra of the isolated product 4-fluorophenol
Figure S211H (top) and 13C (bottom) NMR spectra of the isolated product 4-bromophenol
Figure S22 1H (top) and 13C (bottom) NMR spectra of the isolated 2,2-diethoxyacetophenone
Figure S23 1H (top) and 13C (bottom) NMR spectra of the isolated product 3-methoxybenzoate
Figure S24 1H (top) and 13C (bottom) NMR spectra of the isolated product Ethyl benzoate
12. References