Supporting Information

CuS nanocrystal@microgel nanocomposites for light-regulated release of dual-drugs and chemo-photothermal synergistic therapy in vitro

Jie Sun,*ab‡ Rijun Gui,c‡ Hui Jin,c Na Liab and Xiaojing Wang*ab

a Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, PR China.
E-mail address: mls_sunj@ujn.edu.cn; 94724500@qq.com. Fax: +86 531 82919963; Tel.: +86 531 67816486

b School of Medicine and Life Science, University of Jinan, Jinan 250200, PR China

c Department of Chemistry, College of Chemistry and Chemical Engineering, Qingdao University,
Shandong 266071, PR China

‡ These authors have the equivalent contribution to this work.

Part S1: Preparation of citrate-stabilized CuS NCs

Citrate-stabilized CuS NCs were prepared by a slightly modified method reported previously (ACS Nano, 2015, 9, 3926). In a typical experiment, 20 mL of Cu(CH$_3$COO)$_2$ aqueous solution (1.7 mg mL$^{-1}$) and 20 mL of sodium citrate (2.0 mg mL$^{-1}$) were added in 50 mL of distilled water. The mixture solution was stirred for 30 min at room temperature. Then, 10 mL of Na$_2$S (3.4 mg mL$^{-1}$) was added to the mixture solution and stirred for additional 5 min before transferring to a 90 °C water bath. The preparation reaction was continuously conducted for 20 min. After that, the reaction solution was cooled to room temperature. The as-prepared aqueous suspension of CuS NCs was concentrated by circumrotate evaporation, precipitated with 2-propanol and collected by centrifugation. Colloidal precipitates were dried in vacuum at 60 °C, and re-dispersed in aqueous solution for subsequent experiments.

Part S2: Determination method of NO concentration

To detect NO released from Dox/RBS-loaded CuS@PNIPAM-g-CS nanocomposites in water-
soluble mediums (PBS, 10 mM, pH6.5), the method of colorimetric Griess reaction was utilized to
measure nitrite or nitrate contents in PBS of nanocomposites. The details are available as follows.
Upon irradiation of 365 nm light (0.5 W, 0–60 min), the aliquots of PBS aqueous suspension of
nanocomposites (0.1 mg mL\(^{-1}\), 5 mL) were taken and then stirred in a centrifugal tube at room
temperature. At defined time intervals, the solution was centrifuged for 10 min and the supernatant
(0.5 mL) was extracted and replenished with PBS, followed by the combination with the Griess
reagent (I) (0.1 wt.% of \(\beta\)-naphthylethylenediamine dihydrochloride aqueous solution, 1 mL) and
the Griess reagent (II) (1 wt.% of sulfanilamide in 5 wt.% of phosphoric acid aqueous solution, 1
mL). The resultant mixed solution was incubated for 15 min at room temperature and protected
from light (in the dark). A purple-magenta color appeared immediately. The maximum absorbance
was recorded (at 540 nm) using UV-vis spectrophotometer. The standard curve was determined by
measuring sodium nitrite (0-100 \(\mu\)M) in PBS. The total release of NO was calculated by using the
following equations:
\[
\begin{align*}
R_1 &= C_1 \times 0.005; \\
R_2 &= C_2 \times 0.005 + C_1 \times 0.001; \\
R_3 &= C_3 \times 0.005 + (C_2 + C_1) \times 0.001; \\
&\vdots \\
R_n &= C_n \times 0.005 + (C_{n-1} + C_{n-2} + \ldots + C_1) \times 0.001
\end{align*}
\]
where \(R_n\) is the release amount of NO measured at each time point, and \(C_n\) is the concentration
of NO.

Fig. S1 \(^1\)H-NMR spectrum of PNIPAM-g-CS microgels.
Supporting Information

1H-NMR spectrum indicates the achievement of PNIPAM-g-CS microgels as below. 1H-NMR spectrum indicates a sharp proton peak (-CH-CH$_2$-) at 2.0 ppm, a weak peak (-NH-CH<) at 3.2 ppm and a strong methyl group peak at 1.0 ppm, which are derived from PNIPAM. The strong and broad spectrum band at 4.9 ppm and a weak peak at 3.1 ppm correspond to the proton on the anomeric carbon and on the carbon bearing amino (partially acetamido) groups from CS. The middle-strong peak (RO–CH) at 3.9 ppm is similar to that of CS. The above results demonstrate that the graft reaction had been performed. Because the C$_6$–OH and C$_2$–NH$_2$ of chitosan are more active groups (R. A. A. Muzzarelli, Carbohydr. Polym., 1988, 8, 1), the grafting copolymers are reacted more easily on the positions.

Fig. S2 Size distribution of CuS@PNIPAM-g-CS nanocomposites with NIR-light irradiation (980 nm, 0.5W) for 0~120s, determined by DLS and showed an average size of 91.5 nm.
Supporting Information

Fig. S3 Size distribution of CuS@PNIPAM-g-CS nanocomposites with NIR-light irradiation (980 nm, 0.5W) for 120~210s, determined by DLS and showed an average size of 39.9 nm.

Fig. S4 Hydrodynamic diameters of CuS@PNIPAM-g-CS nanocomposites, placed in a water bath and treated by increasing temperature of water bath.

Fig. S5 In vitro cell viabilities after incubation with different dosages (0-1 mg mL⁻¹) of CuS NCs and CuS@PNIPAM-g-CS nanocomposites.
Fig. S6 Temperature elevation in the microenvironment of HeLa cells directly treated with 0.5 W of light irradiation at 980 nm (a) and 365 nm (b) for 0-30 min, without the incubation with CuS@PNIPAM-g-CS nanocomposites.