Supplementary Materials of the Manuscript

Water Soluble Stimuli-responsive Star Copolymers with Multiple Encapsulation and Release Properties

Sandip Das, Dhruba P. Chatterjee,† Radhakanta Ghosh, Pradip Das‡ and Arun K. Nandi*

Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, INDIA

*For correspondence: Arun K. Nandi, Email: psuakn@iacs.res.in
† Dept. of Chemistry, Presidency University, Kolkata-700 073
‡ Centre for Advanced Materials, IACS, Jadavpur, Kolkata-700 032
Fig. S1 1H NMR spectrum of 3-arm star initiator (TIBB) in CDCl$_3$ along with their peak assignments.
Fig. S2 1H NMR spectrum of 3-arm block copolymer (P_1) in CDCl$_3$ along with their peak assignments (here B means block copolymer)
Fig. S3 GPC traces of (a) 3-arm-p(DEGMA$_{33}$-R-DMAEMA$_{23}$) (P_2) copolymer (b) 3-arm-p(DEGMA)$_3$-Cl$_3$ macro-initiator and 3-arm-p(DEGMA$_{34}$-B-DMAEMA$_{21}$) (P_1) copolymer in DMF
Fig. S4 Z average size vs. temperature plot of P₁ block copolymer containing 17 µM ANS at different pH obtained from DLS study in aqueous solution (0.4% w/v).
Fig. S5 PL intensity vs wavelength plot of pure ANS in aqueous medium and ANS in presence P_3 copolymer solution (0.4 % w/v).
Fig. S6 (a) PL intensity vs wavelength plot of P$_2$ copolymer solution (0.4 % w/v) containing 17 µM ANS with increasing temperature at pH-9.2. (b) PL intensity vs wavelength plot of P$_3$ copolymer solution (0.4 % w/v) containing 17 µM Nile red with increasing temperature at pH-9.2.
Fig. S7 (a) PL-Intensity vs wavelength plot of P_1 copolymer solution (0.4 % w/v) with increasing temperature at pH-9.2. (b) Intensity vs temperature plot of P_1 copolymer solution (0.4 % w/v) at pH-9.2 with increasing temperature.
Fig. S8 Z average size vs temperature plot of aqueous solution P₄ copolymer with variation of pH
Fig. S9 The bar diagram of zeta potential values arising from the surface charge of P_1, P_2 and P_5 copolymers