Supporting Information

Multifunctional single-drug loaded nanoparticles for enhanced cancer treatment with low toxicity \textit{in vivo}

Yuwei Cong, Zigui Wang, Shasha He, Dongfang Zhou, Jizhen Li, Zhigang Xie, Xuesi Chen, Xiabin Jing, Yubin Huang

Contents

\textit{Scheme S1}. Synthesis of Z-DMC-OXA(N$_3$)

\textit{Figure S1}. IR spectra of Z-DMC-OXA(N$_3$)

\textit{Figure S2}. 1H NMR spectra of Z-DMC-OXA(N$_3$) (DMSO-d$_6$)

\textit{Figure S3}. ESI-MS spectra of Z-DMC-OXA(N$_3$)

\textit{Scheme S2}. Synthesis of P-Z-DMC-OXA(N$_3$)

\textit{Figure S4}. 1H NMR spectra of mPEG-b-P(LA-co-MPD) (CDCl$_3$)

\textit{Figure S5}. Cell viability of HeLa cells without any drug in the presence of UVA irradiation.

\textit{Figure S6}. The HeLa cell images under different drug treatment

\textit{Figure S7}. TUNEL staining of H22 tumors from mice
Scheme S1. Synthesis of Z-DMC-OXA(N$_3$).

Fig. S1 IR spectra of c,c-[Pt(DACH)Cl$_2$] (i), c,c-[Pt(DACH)(N$_3$)$_2$] (ii), c,c,t-[Pt(DACH)(N$_3$)$_2$(OH)$_2$] (iii) and Z-DMC-OXA(N$_3$) (iv).
Fig. S2 1H NMR spectra of Z-DMC-OXA(N$_3$) (DMSO- d$_6$).
Fig. S3 Theoretical isotope pattern (A), experimental results (B) and (C) of Z-DMC- OXA(N₃) a measured by ESI-MS (negative mode).

Scheme S2. Synthesis of P-Z-DMC-OXA(N₃).
Fig. S4 1H NMR spectra of mPEG-b-P(LA-co-MPD) (CDCl$_3$).

Fig. S5 Cell viability of HeLa cells without any drug in the presence of UVA irradiation.
Fig. S6 Images of HeLa cells under different drug treatment at a concentration of 54 μM (Pt or DMC) for 72 h.

Fig. S7 TUNEL staining of H22 tumors from mice after different drug treatment on day 29.