Supporting Information

An Efficient approach to Bis-benzoquinonylmethanes On Water Under Catalysis of the Bio-derived O-Carboxymethyl Chitosan

Fatereh Asghari-Haji, Kurosh Rad-Moghadam,* and Nosrat O. Mahmoodi
Chemistry department, University of Guilan, Rasht 41335-19141; radmm@guilan.ac.ir

Contents
S1 The 1H NMR spectrum of O-cm-chitosan in D2O
S2 The FT-IR spectrum of O-cm-chitosan
S3 The X-ray diffraction (XRD) patterns of chitosan and O-cm-chitosan
S4 The thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) of O-cm-chitosan
S5 The scanning electron microscopy (SEM) images of chitosan and O-cm-chitosan
S6 The 1H NMR spectrum of 3,3׳-(Phenylmethylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3a)
S7 The 1H NMR spectrum of 3,3׳-((4-Chlorophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3b)
S8 The 1H NMR spectrum of 3,3׳-((4-Hydroxyphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3c)
S9 The 1H NMR spectrum of 3,3׳-((3-Methoxyphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3d)
S10 The 1H NMR spectrum of 3,3׳-((4-Nitrophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3e)
S11 The 1H NMR spectrum of 3,3׳-((4-Methylphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3f)
S12 The 1H NMR spectrum of 3,3׳-((3-Bromophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3g)
S13 The 1H NMR spectrum of 3,3׳-((4-Methoxyphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d6 (3h)
The 1H NMR spectrum of O-cm-chitosan in D_2O

The CH peak of f is overlapping with the solvent HOD signal at 4.72.
The FT-IR spectrum of fresh and recovered O-cm-chitosan

The FT-IR spectrum shows the basic characteristic absorptions at: 3424 cm\(^{-1}\) (O–H stretch.), 2927 cm\(^{-1}\) (C–H stretch.), 1598 cm\(^{-1}\) (N–H bend), 1727 cm\(^{-1}\) (–COOH), 1076–1143 cm\(^{-1}\) (–C–O stretch.).
The X-ray diffraction (XRD) patterns of chitosan and O-cm-chitosan

The XRD of original chitosan displays two characteristic peaks at $2\theta = 10^\circ$ (weak diffraction peak) and $2\theta = 20^\circ$ (strong diffraction peak) indicating a considerably high degree of crystallinity for chitosan. However, as the XRD of O-cm-chitosan shows, much (but not all) of the crystallinity was lost on O-carboxymethylation of chitosan. Therefore, the synthesized O-cm-chitosan is rather an amorphous bio-derived polymer, very likely due to a large change in intermolecular hydrogen bonding between the individual chains of chitoan on O-carboxymethylation.
The TGA and DSC traces of O-cm-chitosan display a smooth endothermic weight loss at 60-274 °C, presumably due to dehydration and decarboxylation of O-cm-chitosan. The large weight loss at 296 °C in the TGA thermogram of O-cm-chitosan corresponds to a strong exothermic decomposition peak in the DSC trace of this compound. In an earlier study, the maximum thermal decomposition temperature of chitosan was reported to be 302 °C which is slightly greater than the value of 296 °C determined by the present study for O-cm-chitosan. The lower thermal stability of O-cm-chitosan with respect to that of chitosan can be attributed to the less crystallinity and presence of carboxyl groups in this compound.
The scanning electron microscopy (SEM) images of chitosan and O-cm-chitosan

The SEM images showed a smooth surface morphology for chitosan (A1, A2, A3) before being carboxymethylated. Upon O-carboxymethylation (B1, B2, B3), the surface of chitosan was completely changed, indicating that the desired modification was achieved.
S6 The 1H NMR spectrum of 3,3′-(phenylmethylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3a)

1H NMR (500 MHz, DMSO-d_6): δH 7.91 (d, J 6.7 Hz, 2H), 7.83 (d, J 6.3 Hz, 2H), 7.71 (br t, 2H), 7.62 (br t, 2H), 7.10-7.01 (m, 7H, Ph), 6.64 (1H, s, Aliph. CH) ppm.
A-Asghari 1H NMR in DMSO at 298 K 93/6/22

Current Data Parameters
NAME: Guest-1
EXPNO: 82
PRGNO: 1

F2 - Acquisition Parameters
B1ax_2: 20140914
Time: 9.34
INSTTRM: spect
POWERS: 5 mm QNP 1/13
PULPROG: zg30
TD: 32768
SOLVENT: CDCl3
NS: 16
DS: 0
SW: 0.000000 Hz
FIQP: 0.035476 Hz
AQ: 1.630500 s
NS: 574.7
DN: 0.000000 usec
DE: 6.50 usec
TE: 298.10 K
DI: 0.000000000000
NCREST: 0.000000000000
NOEAK: 0.015000000000

-------- CHANNEL f1 --------
MUC1: 1H
FI: 10.00 usec
PL1: -3.00 dB
SF10: 500.1300885 MHz

F2 - Processing parameters
SI: 32768
SF: 500.1300882 MHz
W: 2H
SSB: 0
LB: 0.30 Hz
GB: 0
PC: 1.00

2D NMR plot parameters
CX: 20.00 cm
CY: 33.00 cm
F1P: 6.668 ppm
F1: 4305.55 Hz
F2P: 5.668 ppm
F2: 9343.84 Hz
PPM/cm: 0.13914 ppm/cm
Hz/cm: 69.66583 Hz/cm
The 1H NMR spectrum of 3,3'-((4-Chlorophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3b)

1H NMR (400 MHz, DMSO-d_6): δ_{H} 16.37 (br s, 2 Enolic OH), 7.99 (d, J 7.2 Hz, 2H), 7.90 (d, J 6.8 Hz, 2H), 7.78 (br t, 2H), 7.69 (br t, 2H), 7.22 (br d, 2H, Ar), 7.15 (br d, 2H, Ar), 6.68 (1H, s, Aliph. CH) ppm.
Sample code: 1 (haji)

![Spectrum Image]

Bruker

NAME: Gillan DN
EXPNO: 1694
PROCNO: 1
Data: 20141231
Time: 12.48
INSTRUM: spect
PROCNO: 3 mm PABBO HR-
PURFCD: eq20
SN: 6813K
SOLVENT: DMEO
NS: 20
DS: 0
ZNW: 6012.820 Hz
PTDRES: 6.125266 Hz
AQ: 4.0699866 sec
MS: 144
DW: 62.400 usec
DS: 6.50 usec
TX: 266.9 K
DI: 4.00000000 usec
TDD: 1

CHANNEL f1

MC1: INN
PL1: 14.00 usec
PL1: 2.00 dB
PLMW: 11.6639406 W
SFO1: 400.223020 MHz
S1: 32768
SF: 400.220000 MHz
WNR: FM
RSL: 0
LS: 0.30 Hz
C3: 0
PC: 1.00
The 1H NMR spectrum of 3,3'-(4-
Hydroxyphenyl)methylene)bis(2-
hydroxynaphthalene-1,4-dione) in
DMSO-d_6 (3c)

1H NMR (400 MHz, DMSO-d_6): δ_H
16.56 (br s, 2 Enolic OH), 7.97 (d, J
7.6 Hz, 2H), 7.88 (d, J 7.6 Hz, 2H),
7.77 (t, J 7.6 Hz, 2H), 7.68 (t, J 7.6 Hz,
2H), 6.90 (d, J 8.4 Hz, Ar), 6.58 (s, 1H,
Phenolic OH), 6.56 (d, J 8.4 Hz, Ar),
6.58 (1H, s, Aliph. CH) ppm.
The 1H NMR spectrum of 3,3׳-(3-Methoxyphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3d)

1H NMR (400 MHz, DMSO-d_6): δ_H
16.45 (br s, 2 Enolic OH), 7.98 (d, J 7.6 Hz, 2H), 7.89 (d, J 7.6 Hz, 2H), 7.77 (t, J 7.6 Hz, 2H), 7.68 (t, J 7.6 Hz, 2H), 7.09 (t, J 8.0 Hz, 1H, Ar 5-H), 6.72-6.64 (m, 3H, Ar), 3.64 (s, 3H, OCH$_3$), 6.66 (s, 1H, Aliph. CH) ppm.
The 1H NMR spectrum of 3,3′-((4-Nitrophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3e)

1H NMR (400 MHz, DMSO-d_6): δ_H

16.18 (br s, 2 Enolic OH), 8.06 (d, J 8.6 Hz, 2H, Ar), 7.99 (d, J 7.2 Hz, 2H), 7.91 (d, J 7.6 Hz, 2H), 7.79 (t, J 7.4 Hz, 2H), 7.71 (t, J 7.2 Hz, 2H), 7.43 (d, J 8.6 Hz, 2H, Ar), 6.79 (s, 1H, Aliph. CH) ppm.
The 1H NMR spectrum of 3,3'-(4-Methylphenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3f)

1H NMR (400 MHz, DMSO-d6): δ_{H} 16.45 (br s, 2 Enolic OH), 7.97-6.99 (m, 12H), 6.65 (s, 1H, Aliph. CH), 2.23 (s, 3H, CH$_3$) ppm.
The 1H NMR spectrum of 3,3'-((3-Bromophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3g)

1H NMR (400 MHz, DMSO-d_6): δ_H

16.38 (br s, 2 Enolic OH), 7.98-7.70 (m, 8H), 7.30-7.16 (m, 4H, Ar), 6.70 (s, 1H, Aliph. CH) ppm.
Sample code: G (haj1)
The 1H NMR spectrum of 3,3′-((4-chlorophenyl)methylene)bis(2-hydroxynaphthalene-1,4-dione) in DMSO-d_6 (3h)

1H NMR (400 MHz, DMSO-d_6): δ_H
16.43 (br s, 2 Enolic OH), 7.97 (d, J 7.6 Hz, 2H), 7.89 (d, J 7.2 Hz, 2H), 7.77 (t, J 7.4 Hz, 2H), 7.68 (t, J 7.4 Hz, 2H), 7.02 (d, J 8.4 Hz, 2H, Ar), 6.74 (d, J 8.4 Hz, 2H, Ar), 6.62 s, 1H, Aliph. CH), 3.69 (s, 3H, OCH$_3$) ppm.
Sample code: H (haji)