Supporting Information

Effect of humic acid on the sulfamethazine adsorption by functionalized multi-walled carbon nanotubes in aqueous solution: mechanisms study

Quanquan Yang a, Xiaogang Li a, Guangcai Chen a*, Jianfeng Zhang a, Baoshan Xing b

a Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China

b Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States

* Corresponding author.

Phone: 86-571-63105079

Fax: 86-571-63141304

E-mail addresses: guangcaichen@sohu.com (Chen GC).

There are 9 figures and 3 tables.

There are 14 pages totally.
Fig. S1. Adsorption kinetics of HA onto P-MWCNT (□), C-MWCNT (○), and H-MWCNT (Δ).
Fig. S2 The effect of membrane pore size on measurement of solubility of SMZ. $C_{s0.22}$ and $C_{s0.45}$ are the solubility of SMZ filtered by 0.22 μm and 0.45μm, respectively.
Fig. S3. Ultraviolet-visible absorbance spectra of HA with concentrations from 10 to 60 mg L$^{-1}$ at 190–900 nm. The solid line represents the HA concentration before adsorption and the dotted line shows the HA concentration at adsorption equilibrium.
Fig. S4. HA concentration-absorbance calibration curve.
Fig. S5. μ-FTIR spectra of P-MWCNT (a), C-MWCNT (b), and H-MWCNT (c).
Fig. S6. Zeta potential of P-MWCNT (□), C-MWCNT (○), and H-MWCNT (Δ) as a function of pH.
Fig. S7. Effect of HA on SMZ adsorption. (a) Concentration of HA as affected by Ca\(^{2+}\) (0–100 mM). The initial concentrations of HA were 10 and 30 mg/L. \(C_{HA}\) is the concentration of HA at which HA precipitation was caused by Ca\(^{2+}\) and separated using a 0.45 μm hydrophilic membrane filter. (b) Recovery percentage of SMZ. The HA was precipitated by Ca\(^{2+}\) and was separated immediately using a 0.45 μm hydrophilic membrane filter.
Fig. S8. Relative solubility based on a background solution (value = 1) of SMZ in the presence of HA.
Fig. S9. The species distribution for SMZ at different solution pH.
Table S1 Basic MWCNTs structural properties.

<table>
<thead>
<tr>
<th>Name</th>
<th>Outer diameter (nm)</th>
<th>Inner diameter (nm)</th>
<th>Carbon content (%)</th>
<th>Oxygen content (%)</th>
<th>Surface area (m²·g⁻¹)</th>
<th>Mesopore volume (cm³·g⁻¹)</th>
<th>Micropore volume (cm³·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-MWCNTs</td>
<td>10-20</td>
<td>5-10</td>
<td>99</td>
<td>0.85</td>
<td>167</td>
<td>0.619</td>
<td>0.016</td>
</tr>
<tr>
<td>C-MWCNTs</td>
<td>10-20</td>
<td>5-10</td>
<td>97</td>
<td>2.16</td>
<td>178</td>
<td>0.629</td>
<td>0.015</td>
</tr>
<tr>
<td>H-MWCNTs</td>
<td>10-20</td>
<td>5-10</td>
<td>92</td>
<td>7.07</td>
<td>185</td>
<td>0.756</td>
<td>0.024</td>
</tr>
</tbody>
</table>

a The data are herein presented in Table S1 were firstly published in Chen et al., 2009.

b The diameters were determined by transmission electron microscope (TEM);

c The carbon and oxygen contents were determined by X-ray photoelectron spectroscopy (XPS);

d The surface area and pore volume were determined by nitrogen gas adsorption and desorption at 77K with ASAP2000 (Micromeritics Instrument Corporation).
Table S2 Elemental compositions and 13C NMR estimates of carbon distributions for HA.

<table>
<thead>
<tr>
<th>sample</th>
<th>Elemental composition (%)a</th>
<th>Ash(%)a</th>
<th>(O+N)/Cb</th>
<th>Integration of NMR results (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>AHA</td>
<td>57.07</td>
<td>3.25</td>
<td>36.85</td>
<td>1.47</td>
</tr>
</tbody>
</table>

a Mass-based percentages. The C, H and N were determined by CHN Elemental Analyzer (EA 1112, Thermo Finnigan, Italia), the ash were determined using combustion the processed ash at 750 °C for 4 hour, and the oxygen content were calculated by mass difference [Oxygen content = 100 % -(C content +H content +N content)].

b Molar-based ratios.

c Aliphaticity was calculated as aliphatic C (0-109 ppm)/aromatic C (109-163 ppm) ratio2. The major structural carbons were measured using a 300M Hz NMR spectrometer (Bruker AV300, Switzerland).
Table S3 Structural and physicochemical properties of sulfamethazine.

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS number</th>
<th>Chemical structure</th>
<th>Molecular weight (g·mol⁻¹)</th>
<th>Water solubility (g·L⁻¹)</th>
<th>pKa</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfamethazine</td>
<td>57-68-1</td>
<td></td>
<td>278.33</td>
<td>Fig. 5(a)</td>
<td>2.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.42</td>
</tr>
</tbody>
</table>

a from chemBlink Database of Chemicals from Around the World
http://www.chemblink.com/products/57-68-1.htm
b The water solubility of SMZ were determined at temperature 298 K.
c Reference from 3-5.
Literature cited

