Supplementary Material for

Complex toxicological interaction between ionic liquid and pesticide to *Vibrio qinghaiensis* sp.-Q67

Rui Qua, Shu-Shen Liua,b, Fu Chenc, Kai Lia

a Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

b State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

c College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China

Total pages: 9
Total Tables: 2
Total figures: 5

Supplementary Material includes the following: Concentration-response models, statistics (\(R^2\) and RMSE), effective concentrations (EC\(_{10}\), EC\(_{50}\) and EC\(_{70}\)) and characteristic parameters (ZEP, EC\(_{\text{min}}\) and E\(_{\text{min}}\) for J-shape CRCs) of ionic liquids at seven exposure times (Table S1); The concentration-response models (\(\alpha\) and \(\beta\)), statistics (\(R^2\) and RMSE) and effective concentrations (EC\(_{10}\), EC\(_{50}\) and EC\(_{70}\)) of two pesticides at seven exposure times (Table S2); Characteristic parameters (EC\(_{10}\), EC\(_{50}\) and EC\(_{70}\) for all CRCs and ZEP, EC\(_{\text{min}}\) and E\(_{\text{min}}\) for J-shape CRCs) of 20 mixture rays at seven exposure times (Figure S1). Concentration-response curves of 5 mixture rays in [emim]Br-MET systems at seven exposure times (Figure S2); Concentration-response curves of 5 mixture rays in [emim]Cl-MET systems at seven exposure times (Figure S3); Concentration-response curves of 5 mixture rays in [emim]Br-
SIM systems at seven exposure times (Figure S4); Concentration-response curves of 5 mixture rays in [emim]Cl-SIM systems at seven exposure times (Figure S5).
Table S1
Concentration-response models, statistics (R^2 and RMSE), effective concentrations (EC_{10}, EC_{50} and EC_{70}) and characteristic parameters (ZEP, EC_{min} and E_{min} for J-shape CRCs) of ionic liquids at seven exposure times

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Time (h)</th>
<th>Function</th>
<th>R^2</th>
<th>RMSE</th>
<th>EC_{10} (mol/L)</th>
<th>EC_{50} (mol/L)</th>
<th>EC_{70} (mol/L)</th>
<th>ZEP</th>
<th>EC_{min}</th>
<th>E_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[emim]Br</td>
<td>0.25</td>
<td>Logit</td>
<td>0.9755</td>
<td>0.0459</td>
<td>8.42E-04</td>
<td>7.08E-03</td>
<td>1.45E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Logit</td>
<td>0.9755</td>
<td>0.0563</td>
<td>3.00E-03</td>
<td>1.52E-02</td>
<td>2.52E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Logit</td>
<td>0.9506</td>
<td>0.1017</td>
<td>2.17E-03</td>
<td>9.27E-03</td>
<td>1.50E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Logit</td>
<td>0.9708</td>
<td>0.0715</td>
<td>2.69E-03</td>
<td>7.48E-03</td>
<td>1.05E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Logistic</td>
<td>0.9848</td>
<td>0.0623</td>
<td>3.49E-03</td>
<td>7.28E-03</td>
<td>1.03E-02</td>
<td>0.0028</td>
<td>0.0015</td>
<td>-8.7610</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Logistic</td>
<td>0.9914</td>
<td>0.0498</td>
<td>4.42E-03</td>
<td>8.14E-03</td>
<td>1.11E-02</td>
<td>0.0036</td>
<td>0.0017</td>
<td>-14.8817</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Logistic</td>
<td>0.9948</td>
<td>0.0378</td>
<td>4.86E-03</td>
<td>9.11E-03</td>
<td>1.25E-02</td>
<td>0.0039</td>
<td>0.0018</td>
<td>-14.2030</td>
</tr>
<tr>
<td>[emim]Cl</td>
<td>0.25</td>
<td>Logit</td>
<td>0.9784</td>
<td>0.0450</td>
<td>6.36E-04</td>
<td>7.27E-03</td>
<td>1.48E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Logit</td>
<td>0.9823</td>
<td>0.0577</td>
<td>3.63E-03</td>
<td>1.70E-02</td>
<td>2.77E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Logit</td>
<td>0.9619</td>
<td>0.1007</td>
<td>2.23E-03</td>
<td>9.36E-03</td>
<td>1.51E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Logit</td>
<td>0.9789</td>
<td>0.0992</td>
<td>2.99E-03</td>
<td>7.78E-03</td>
<td>1.05E-02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Logistic</td>
<td>0.9890</td>
<td>0.0571</td>
<td>3.85E-03</td>
<td>7.65E-03</td>
<td>1.08E-02</td>
<td>0.0030</td>
<td>0.0015</td>
<td>-11.7519</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Logistic</td>
<td>0.9935</td>
<td>0.0443</td>
<td>4.65E-03</td>
<td>8.67E-03</td>
<td>1.19E-02</td>
<td>0.0037</td>
<td>0.0018</td>
<td>-12.9263</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Logistic</td>
<td>0.9946</td>
<td>0.0400</td>
<td>4.81E-03</td>
<td>9.25E-03</td>
<td>1.27E-02</td>
<td>0.0038</td>
<td>0.0018</td>
<td>-12.1068</td>
</tr>
</tbody>
</table>

a: R^2 refers to coefficient of determination.
b: RMSE refers to root mean square error.
c: ZEP refers to zero effect point (concentration).
d: E_{min} refers to the maximum stimulatory effect or the minimum inhibition.
e: EC_{min} refers to the concentration with maximum stimulatory effect.
Table S2
The concentration-response models (α and β), statistics (R^2 and RMSE) and effective concentrations (EC_{10}, EC_{50} and EC_{70}) of two pesticides at seven exposure times.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Time (h)</th>
<th>Function</th>
<th>α</th>
<th>β</th>
<th>R^2</th>
<th>RMSE</th>
<th>EC_{10} (mol/L)</th>
<th>EC_{50} (mol/L)</th>
<th>EC_{70} (mol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MET</td>
<td>0.25</td>
<td>Weibull</td>
<td>7.12</td>
<td>2.71</td>
<td>0.9945</td>
<td>0.0196</td>
<td>3.49E-04</td>
<td>1.73E-03</td>
<td>2.76E-03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Weibull</td>
<td>5.84</td>
<td>2.12</td>
<td>0.9986</td>
<td>0.0100</td>
<td>1.53E-04</td>
<td>1.18E-03</td>
<td>2.15E-03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Weibull</td>
<td>6.41</td>
<td>2.25</td>
<td>0.9990</td>
<td>0.0094</td>
<td>1.42E-04</td>
<td>9.73E-04</td>
<td>1.71E-03</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Weibull</td>
<td>6.74</td>
<td>2.34</td>
<td>0.9914</td>
<td>0.0303</td>
<td>1.44E-04</td>
<td>9.18E-04</td>
<td>1.58E-03</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Weibull</td>
<td>6.73</td>
<td>2.3</td>
<td>0.9983</td>
<td>0.0138</td>
<td>1.25E-04</td>
<td>8.21E-04</td>
<td>1.43E-03</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Weibull</td>
<td>7.12</td>
<td>2.44</td>
<td>0.9927</td>
<td>0.0287</td>
<td>1.44E-04</td>
<td>8.55E-04</td>
<td>1.44E-03</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Weibull</td>
<td>6.94</td>
<td>2.41</td>
<td>0.9947</td>
<td>0.0237</td>
<td>1.54E-04</td>
<td>9.30E-04</td>
<td>1.58E-03</td>
</tr>
<tr>
<td>SIM</td>
<td>0.25</td>
<td>Weibull</td>
<td>6.27</td>
<td>1.83</td>
<td>0.9927</td>
<td>0.0230</td>
<td>2.21E-05</td>
<td>2.36E-04</td>
<td>4.73E-04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Weibull</td>
<td>4.83</td>
<td>1.35</td>
<td>0.9933</td>
<td>0.0195</td>
<td>5.69E-06</td>
<td>1.41E-04</td>
<td>3.63E-04</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Weibull</td>
<td>6.11</td>
<td>1.79</td>
<td>0.9870</td>
<td>0.0303</td>
<td>2.14E-05</td>
<td>2.41E-04</td>
<td>4.90E-04</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Weibull</td>
<td>6.69</td>
<td>1.98</td>
<td>0.9901</td>
<td>0.0274</td>
<td>3.05E-05</td>
<td>2.73E-04</td>
<td>5.19E-04</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Weibull</td>
<td>7.41</td>
<td>2.21</td>
<td>0.9924</td>
<td>0.0249</td>
<td>4.25E-05</td>
<td>3.03E-04</td>
<td>5.38E-04</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Weibull</td>
<td>8.54</td>
<td>2.56</td>
<td>0.9929</td>
<td>0.0241</td>
<td>6.10E-05</td>
<td>3.32E-04</td>
<td>5.45E-04</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Weibull</td>
<td>9.09</td>
<td>2.75</td>
<td>0.9949</td>
<td>0.0203</td>
<td>7.52E-05</td>
<td>3.64E-04</td>
<td>5.78E-04</td>
</tr>
</tbody>
</table>

α: location parameter
β: shape parameter
Figure S1 Characteristic parameters (EC_{10}, EC_{50} and EC_{70} for all CRCs and ZEP, EC_{min} and F_{min} for J-shape CRCs) of 20 mixture rays at seven exposure times (●: R1; ○: R2; □: R3; ▣: R4; ✧: R5).
Figure S2 Concentration-response curves of five mixture rays in [emim]Br-MET systems at seven exposure times (○: experimental values; —: CRCs fitted; —: CRCs predicted by CA; —: 95% CIs)
Figure S3 Concentration-response curves of five mixture rays in [emim]Cl-MET systems at seven exposure times (○: experimental values; —: CRCs fitted; ---: CRCs predicted by CA; --: 95% CIs)
Figure S4 Concentration-response curves of five mixture rays in [emim]Br-SIM systems at seven exposure times (○: experimental values; —: CRCs fitted; —: CRCs predicted by CA; --: 95% CIs)
Figure S5 Concentration-response curves of five mixture rays in [emim]Cl-SIM systems at seven exposure times (○: experimental values; —: CRCs fitted; —: CRCs predicted by CA; --: 95% CIs)