Supplementary Material

Insight into the origin of photoreactivity of various well-defined Bi$_2$WO$_6$ crystals: exposed heterojunction-like surface and oxygen defect

Yongchao Maa, Qingzhi Liua, Qi Wanga, Dan Qua, Jinsheng Shia*

aQingdao Agricultural University, Qingdao 266109, People’s Republic of China

* Corresponding author:

Tel: +86-532-88030161; Fax: +86-532-86080213

E-mail address: jsshiqn@aliyun.com

<table>
<thead>
<tr>
<th>Sample</th>
<th>X</th>
<th>E_g (eV)</th>
<th>E_{CB} (eV)</th>
<th>E_{VB} (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanosheet-assembled microspheres</td>
<td>6.36</td>
<td>2.51</td>
<td>0.61</td>
<td>3.12</td>
</tr>
<tr>
<td>Nanoparticle-assembled microspheres</td>
<td>6.36</td>
<td>2.41</td>
<td>0.66</td>
<td>3.07</td>
</tr>
<tr>
<td>Single-crystalline nanosheets</td>
<td>6.36</td>
<td>2.51</td>
<td>0.61</td>
<td>3.12</td>
</tr>
</tbody>
</table>

Table S1 The valence band (VB) edge and the conduction band (CB) edge positions of Bi$_2$WO$_6$.

The valence band (VB) edge and the conduction band (CB) edge positions of the prepared Bi$_2$WO$_6$ can be calculated from the following formula:

$$E_{VB} = X - E_g + 0.5E_g$$ (1)
\[E_{CB} = E_{VB} - E_g \] \hspace{1cm} (2)

where \(E_{VB} \) is the VB edge potential, \(E_{CB} \) is the CB edge potential, \(E_g \) is the band gap energy of the semiconductor, \(X \) is the electronegativity of the semiconductor that is the geometric mean of the electronegativity of the constituent atoms, \(E^e \) is the energy of free electrons on the hydrogen scale (about 4.5 eV). The \(X \) values of \(\text{Bi}_2\text{WO}_6 \) is 6.36 eV.

Fig. S1 Emission spectrum of the 300W Xe lamp with a 420 nm cutoff filter.
Fig. S2 TEM images of as-prepared Bi$_2$WO$_6$ samples: (a-b) nanosheet-assembled microspheres, (c-d) nanoparticle-assembled microspheres and (e) single-crystalline nanosheets.

Fig. S3 (a) Schematic illustration of the crystal orientation of the nanosheets with exposed (020) facets. (b) The crystal structure of orthorhombic Bi$_2$WO$_6$. Atomic structure of the (020) facets: (c) side view and (d) top view. W, O and Bi atoms are represented as blue, red and yarrow spheres, respectively.
Fig. S4 Enlarged profile of the XRD patterns of the prepared Bi$_2$WO$_6$ samples between angles 10-30 °: (a) nanosheet-assembled microspheres, (b) nanoparticle-assembled microspheres and (c) single-crystalline nanosheets.

Fig. S5 Photocatalytic degradation of MO under visible light irradiation over various Bi$_2$WO$_6$ samples: (a) nanosheet-assembled microspheres, (b) nanoparticle-assembled microspheres and (c) single-crystalline nanosheets.
Fig. S6 N$_2$ absorption-desorption isotherms of the prepared Bi$_2$WO$_6$ samples: (a) nanosheet-assembled microspheres, (b) nanoparticle-assembled microspheres and (c) single-crystalline nanosheets.

Fig. S6 describes typical N$_2$ adsorption-desorption isotherms of the prepared samples. Both Bi$_2$WO$_6$ nanosheet-built microspheres and nanosheets showed a typical II adsorption-desorption isotherms. In addition, the weak adsorption-desorption hysteresis demonstrated monolayer absorption. However, the nanoparticle-assembled microspheres displayed IV-type isotherm character, indicating the existence of mesopores. The specific surface areas of nanosheet-assembled microspheres, nanoparticle-assembled micropsheres and single-crystalline nanosheets are 26.97±1, 40.72±1 and 13.56±1 m2 g$^{-1}$, respectively.

Supplementary reference