Rational Design of Photo-responsive Supramolecular Nanostructures
based on Azobenzene-derived Surfactant-encapsulated Polyoxometalate Complex

Yongxian Guo, a Yanjun Gong, a Zhidan Yu, b Yan’an Gao, c Li Yu a *

a Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education,
Jinan 250100, P. R. China

b School of Life Science, Shandong University, Jinan 250100, P. R. China

c China Ionic Liquid Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China

Supplementary Information

Table of Contents

Supporting Information ... 1

Fig. S1 .. 2

Fig. S2 .. 3

Fig. S3 .. 4

Fig. S4 .. 5
Fig. S1 Digital pictures of ETAB-POM hybrid solutions fabricated in visible light (a) and its typical Tyndall effect irradiated by a red laser light (b), and upon UV light irradiation (c).
Fig. S2 The small angle X-ray scattering (SAXS) diffractogram of the ETAB-POM solid hybrid materials.
Fig. S3 The CV curve of individual POM aqueous solution vs. saturated calomel electrode (SCE) in 0.01 M H$_2$SO$_4$ solution. Scan rate: 50 mV/s.
Fig. S4 The CV curve of the ETAB-POM SECs vs. saturated calomel electrode (SCE) in 0.01 M H_2SO_4 solution. Scan rate: 50 mV/s.