Supporting Information

Core-spacer-shell Structured NaGdF$_4$: Yb$^{3+}$/Er$^{3+}$@NaGdF$_4$@Ag Nanoparticles for Plasmon-enhanced Upconversion Luminescence

Xindan Zhang$^{[a,b]}$, Bin Li*$^{[a]}$, Mingming Jiang$^{[a]}$, Liming Zhang$^{[a]}$, Heping Ma$^{[a]}$

$^{[a]}$State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China

$^{[b]}$University of Chinese Academy of Sciences, Beijing 100049, PR China.

*Corresponding author. Tel./fax: +86431 86176935.
E-mail address: libinteacher@163.com (B. Li)
Figure S1. Dynamic light scattering measurements (DLS) of core-spacer-shell UCNPs in deionized water.

Figure S2. FT-IR spectra of UCNPs-OA (black line) and UCNPs-TGA (red line).
Figure S3. Energy diagram and simplified mechanism for energy-transfer upconversion between Yb$^{3+}$ and Er$^{3+}$.

Figure S4. FDTD simulations of electric field intensity enhancement at 980 nm a single of core–spacer-shell structured UCNPs model: a 14 nm NaGdF$_4$ core (n = 1.29), with a 1.75 nm NaGdF$_4$ spacer layer (n = 1.29) and a 1.5 nm Ag shell (n = 0.20), color bar indicates E/E$_0$.

Figure S5. Dotted line: FDTD simulated absorption of a hollow Ag shell, inset is the picture of hollow Ag shell; Solid line: absorption of core-spacer-shell UCNPs.