Synthesis and Electrochemical Properties of Mn$_3$O$_4$

Nanocrystals with Controlled Morphologies Grown from Compact Ion Layers

Hae Woong Parka, Ho Jun Leea, Sun-min Parka and Kwang Chul Roh*a

aEnergy & Environmental Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju-si, Gyeongsangnam-do, 660-031, Republic of Korea.

* Corresponding author: Kwang Chul Roh (rkc@kicet.re.kr)

Fig. S1. The Pourbaix diagram showing the potential-pH equilibrium for manganese-water system.
Fig. S2. SEM images of the morphological evolution of the different-shaped Mn$_3$O$_4$ nanocrystals; (a, b, c, d, e) 1 M Mn(NO$_3$)$_2$ solution and (f, g, h, i, j) 0.5 M Mn(NO$_3$)$_2$ solution.

Fig. S3. N$_2$ adsorption-desorption isotherms of Mn$_3$O$_4$ samples and the insets in (a-c) are the corresponding pore size distribution curves.

Fig. S4. SEMs of the Mn$_3$O$_4$ electrode after the charging-discharging (after 1000 cycles) experiments. (a) rod-like, (b) plate-like and (c) round Mn$_3$O$_4$.