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1 Derivation of the model equations

A mole balance of CO2, using the bubble as control volume, can be used to find the relation between the change in
bubble volume and the absorption rate of CO2. In a reference frame travelling at a constant speed vb along with
the bubble, it holds that:

d

dt

(Vb(t)P (t)

RT

)
= −NAb (S1)

with N the flux of CO2 from the gas phase to the liquid phase for a single bubble and Ab the surface area of the
bubble. This flux is usually expressed as [Levenspiel(1999)]:

N =
1(

kGa
H

)−1
+ (kLaE)−1

(P (t)

H
− c(t)

)
(S2)

If it is assumed that the resistance to mass transfer in the gaseous phase (H/kGa) is negligible, then expression
(S2) can be simplified:

N = kLaE
(P (t)

H
− cL(t)

)
(S3)

kL represents the mass transfer coefficient in the liquid film, and a denotes the gas-liquid interfacial area per volume
of contactor. For Taylor flow, this is equal to the interfacial area of a single bubble divided by the unit cell volume
Vuc. E is the chemical enhancement factor, taking into account the increased mass transfer rate if rapid reactions
take place in the liquid film surrounding the bubble. If no chemical reactions take place, E is simply equal to 1.
P (t)/H is the equilibrium concentration of the absorbed species in the liquid if Henry’s law is assumed to be valid.
H represents Henry’s coefficient. Hence, P (t)/H − cL(t) represents the driving force for diffusion, where cL stands
for the bulk liquid concentration of the absorbent.

Solving equation (S1) for the rate of change of the bubble volume results in:

dVb(t)

dt
= −NaRTVuc(t)

P
− Vb(t)

P (t)

dP (t)

dt
(S4)

If it is assumed that the majority of the liquid is trapped between two gas bubbles and the density of the liquid
does not change appreciably whilst absorbing the gas, the liquid volume in a unit cell is given by the constant
liquid slug volume. Under these assumptions, a change in the unit cell volume can be solely ascribed to a change
in bubble volume, i.e.:

dVb(t)

dt
=

dVuc(t)

dt
(S5)

A mole balance of CO2 using the liquid slug as a control volume is also required:

d

dt
(Vsc(t)) = NaVuc(t)− r(c)Vs (S6)

with Vs the liquid slug volume and r(cL) the reaction rate per unit liquid slug volume. As previously mentioned,
the liquid slug volume is assumed to be constant:

dc(t)

dt
= Na

Vuc(t)

Vs
− r(c) (S7)

Rapid absorption of a gaseous species also results in a significant bubble velocity change. For a stationary reference
frame, a mole balance for CO2 in the gas phase results in:

0 = (AuGcG)x − (AuGcG)x+∆x −NaA∆x (S8)

⇒ d

dx

uGP (x)

RT
= −Na (S9)

with uG the superficial gas velocity, cG(x) the concentration of gas molecules in the bubble, x the axial coordinate,
and A the cross-sectional area of the capillary. The superficial gas velocity uG is related to the bubble velocity vb
by uG = εGvb, with εG the gas void fraction.
Lastly, to calculate the pressure drop, a momentum balance is constructed using the unit cell as control volume in
a reference frame moving along with the bubble. The rate of change of momentum can be ascribed to a pressure
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Figure S1: Illustration of the terms in the momentum balance

gradient across the unit cell, viscous and interfacial forces acting on the unit cell boundaries and the rate of
momentum in- and outflow by convection:

dmsvb(t)

dt
= −AdP

dx
Luc − τSLuc + [convection term] (S10)

With ms the mass of the liquid slug, A the cross-sectional area of the capillary, S the cross-sectional perimeter,
and Luc the unit cell length. An illustration of the different contributions is provided in Figure S1. In deriving
equation (S10), the following assumptions were made: (i) the mass of the liquid slug is much larger than the mass
of the gas bubble and the mass of the liquid in the film between the bubble and the capillary wall, (ii) the slug
velocity is equal to the bubble velocity, (iii) the interfacial forces and viscous forces can be lumped together in τ ,
(iv) the difference in pressure acting on both sides of the unit cell can be described by the local, averaged pressure
gradient, and (v) the liquid film between the bubble and the capillary wall is thin and the velocity of the liquid
inside this film is small. Hence, the rate of momentum in- and outflow by convection are assumed to be small and
negligible. The pressure drop is given by:

dP

dx
= −ρL

dvb(t)

dt
− τS

A
(S11)

Rearranging equations (S4), (S5), (S9), (S7), and (S11), and making use of dx = vbdt results in the final model
equations:

dVb
dx

= −NaVuc
vb

RT

P
− Vb
P

dP

dx
(S12)

dVuc
dx

= −NaVuc
vb

RT

P
− Vb
P

dP

dx
(S13)

dvb
dx

= −NaRT
P
− εGvb

P

dP

dx
(S14)

dc

dx
=

Na

vb

Vuc
Vs
− r(c)

vb
(S15)

dP

dx
=

ρLvbNa
RT
P −

τS
A

1− εGρLv2b
P

(S16)

1.1 Derivation of the quadratic program

Consider the optimality condition

O.C. =

∫ x2

x1

L
(
vb, φ(x), φ′(x), . . .

)
dx (S17)
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with

L = (vb − vexp
b )2 +

(
vb −

V exp
b + Vs
C1

)2

+
(
vb −

V exp
uc

C1

)2

+ γ
(d2φ

dx2

)2

(S18)

Assume that
∫

can be approximated by
∑

, so that for N experimental values of vb:

O.C. =

N∑
i=1

(vb,i − vexp
b,i )2 +

(
vb,i −

V exp
b,i + Vs

C1

)2

+
(
vb,i −

V exp
uc,i

C1

)2

+ γ

N−1∑
i=2

ψ2
i (S19)

with

ψi =
d2φ

dx2

∣∣∣∣
ξi

≈ φi+1 + φi−1 − 2φi
(xi+1 − xi)2

(S20)

Introduce three new dummy variables ξ, η and ζ such that

ξi = vb,i − vexp
b,i (S21)

ηi = vb,i −
V exp
b,i + Vs

C1
= ξi + vexp

b,i −
V exp
b,i + Vs

C1
(S22)

ζi = vb,i −
V exp
uc,i

C1
= ξi + vexp

b,i −
V exp
uc,i

C1
(S23)

So that the constraint

Vs
C1

(
Pk+1 − Pk

)
= Pk+1vb,k+1 − Pkvb,k +RT (xk+1 − xk)

φk+1 + φk
2

(S24)

can be written as

Pi+1ξb,i+1 − Pkξb,i +RT (xi+1 − xi)
φi+1 + φi

2
=
Vs
C1

(
Pi+1 − Pi

)
− Pi+1v

exp
b,i+1 + Piv

exp
b,i (S25)

It can now be seen that, indeed, the optimal control problem reduces to a quadratic program:

minimize : min
φi

N∑
i=1

(
ξ2
i + η2

i + ζ2
i

)
+ γ

N−1∑
i=2

ψi (S26)

constraints : ξb,i+1Pi+1 − ξb,iPi +
RT

2
(xi+1 − xi)(φi+1 + φi) =

Vs
C1

(
Pi+1 − Pi

)
− Pi+1v

exp
b,i+1 + Piv

exp
b,i (S27)

ηi − ξi = vexp
b,i −

V exp
b,i + Vs

C1
(S28)

ζi − ξi = vexp
b,i −

V exp
uc,i

C1
(S29)

(xi+1 − xi)2ψi − (φi+1 + φi−1 − 2φi) = 0 (S30)

Or more concise

minimize : min
x

xTHx (S31)

constraints : Ax = b (S32)

With
x = (ξ1, . . . , ξN , η1, . . . , ηN , ζ1, . . . , ζN , ψ2, . . . , ψN−1, φ1, . . . , φN )T (S33)

H =


IN×N 0 0 0 0
0 IN×N 0 0 0
0 0 IN×N 0 0
0 0 0 γIN−2×N−2 0
0 0 0 0 0

 (S34)
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with IK×K′ a unity matrix with K rows and K ′ columns.

A =


A1 0 0 0 A2

−IN×N IN×N 0 0 0
−IN×N 0 IN×N 0 0

0 0 0 A3 A4

 (S35)

A1 =



−P1 P2 0 . . . 0 0
0 −P2 P3 . . . 0 0
0 0 −P3 . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . PN−1 0
0 0 0 . . . −PN−1 PN


(S36)

A2 =
RT

2



x2 − x1 x2 − x1 0 . . . 0 0
0 x3 − x2 x3 − x2 . . . 0 0
0 0 x4 − x3 . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . xN−1 − xN−2 0
0 0 0 . . . xN − xN−1 xN − xN−1


(S37)

A3 = (xi+1 − xi)2IN−2×N−2 (S38)

A4 =



−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
0 0 −1 . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . −1 0
0 0 0 . . . 2 −1


(S39)

and

b = [vexp
b,1 P1 − vexp

b,2 P2 +
Vs
C1

(
P2 − P1

)
, . . . , vexp

b,N−1PN−1 − vexp
b,NPN +

Vs
C1

(
PN − PN−1

)
, (S40)

vexp
b,1 −

V exp
b,1 + Vs

C1
, . . . , vexp

b,N −
V exp
b,N + Vs

C1
, vexp
b,1 −

V exp
uc,1

C1
, . . . , vexp

b,N −
V exp
uc,N

C1
, 0, . . . , 0]T

2 Model and fitting results

2.1 Model validation

The model equations S12 to S16 predict linear relationships between bubble volume, unit cell volume and bubble
velocity:

Vuc = C1vb (S41)

Vb = −Vs + C1vb (S42)

Eq. (S41) is confirmed by comparing Vuc/C1 with vb for CO2 absorption in both the carbonate buffer (slow
absorption) and ionic liquid (fast absorption). Figure S2a shows that almost all of the 1787 data points fall onto
the parity line with only few outliers. Similarly, Figure S2b confirms Eq. (S42) by comparing Vs determined by (i)
regressing Vb with vb and (ii) by averaging Vuc−Vb for both the carbonate buffer (slow absorpton) and ionic liquid
(fast absorption).

2.2 The role of the fitting parameter γ

Figure S3 shows the behavior of the fitted volumetric flux Na as the smoothing parameter γ in expression

L = (vb − vexp
b )2 +

(
vb −

V exp
b + Vs
C1

)2

+
(
vb −

V exp
uc

C1

)2

+ γ
(d2φ

dx2

)2

(S43)

increases. The influence of increasing γ can clearly be seen as the flux changes from wildly fluctuating to becoming
insensitive to general trends. Note that for the special case of γ = 0, the fitting procedure is equal to direct
substitution and differentiation of the experimental data in equations (S14).
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(a) Linear correlation between unit cell volume and bub-
ble velocity (equation (S41)).

(b) Equality between Vs determined using different
methods.

Figure S2: Validation of the linear linear relationship between the unit cell volume and bubble velocity and the
equality of slug volumes for different methods.

Figure S3: Influence of γ on (a) the fitted flux and (b) the resulting sum of squared validation error.
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3 Scaling law relating the interfacial flux to the characteristic time

In the following we are assuming two limiting cases in which the absorption rate is independent of the hydrodynamic
conditions. These are (i) an extremely fast reaction compared to the physical absorption process, so that the
reaction proceeds very close to the gas-liquid interfacial area and (ii) a very slow reaction compared to the physical
absorption process so that the liquid is essentially saturated, but a reaction in the bulk liquid keeps the absorption
process going.
Case 1: For the very fast reaction with respect to the physical absorption, and assuming a first order reaction, one
finds [Levenspiel(1999)]:

kLE =
√
k′′′D (S44)

In this case, it is reasonable to assume that the bulk concentration is zero (c = 0), and hence the flux becomes:

N =

√
k′′′D

H
P (S45)

Case 2: For a very slow reaction with respect to the physical absorption, the corresponding differential equation
for the physically absorbed CO2 in a frame moving along with the bubble is (assuming a first order, irreversible
reaction):

dc

dt
= kLa

(
P

H
− c
)
− kc (S46)

Assuming the system quickly reaches a pseudo steady state solution, the concentration is equal to:

cPSS =
kLa

kLa+ k

P

H
(S47)

And hence the flux is equal to (since the reaction is slow compared to the physical absorption E ≈ 1):

N = kL

(
1− kLa

kLa+ k

)
P

H
=

kLk

kLa+ k

P

H
(S48)

For the specific case of a very slow reaction (k << kLa) this simplifies to

Na =
k

H
P (S49)

In conclusion, in case 1 we find that the flux is proportional to the pressure and in case 2 we find the volumetric
flux is proportional to the pressure. The pressure drop is given by Eqs. (24)–(27). However, for simplicity we
assume the interfacial pressure drop term to be negligible. Note that these equations result in a HagenPoiseuille
law with respect to the superficial liquid velocity:

P = Patm +
32ηuL
d2
c

(L− x) (S50)

Hence, the average pressure in the observed capillary section is given by:

P = Patm +
32ηuL
d2
c

(
L− x2 + x1

2

)
(S51)

For our data, there is a linear relationship between the characteristic time t∗ = (x2 − x1)/uL and uL
(
L− x2+x1

2

)
(this is the experiment specific part of P ). This is shown in Figure S4. In our discussion, we will represent this
symbolically as uL

(
L− x2+x1

2

)
= α+ βt∗. Hence, the average flux changes linearly with the characteristic time:

N =

√
k′′′D

H

[
Patm +

32η

d2
c

(α+ βt∗)

]
(S52)

or

Na =
k

H

[
Patm +

32η

d2
c

(α+ βt∗)

]
(S53)

Note: α and β can be determined independently of N or Na. Hence, the only fitting parameter remaining is
the group

√
k′′′D/H or k/H. Fitting this equation to experimental data is more restrictive than fitting a generic

straight line where both slope and intercept are varied independently. Least square fitting this factor to the
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Figure S4: Linear relationship between the characteristic time t∗ = (x2 − x1)/uL and uL
(
L− x2+x1

2

)
.

Figure S5: Fitted average fluxes versus the characteristic time.
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experimental data gives
√
k′′′D/H = 4.67 · 10−7 or k/H = 0.0024. The fitted curve for both cases is shown in

Figure S5. The R2 for the fast and slow case are resp. 0.668 and 0.775. It seems that in the case of a very slow
reaction the slope is predicted more accurately compared to the case of a very fast reaction. If the second data
point from the left for the volumetric flux is viewed as an outlier, k/H remains equal to 0.0024, but the R2 improves
to 0.936. None of the points for the fast case appear to be outliers and the general trend cannot be explained by
the linear model with only one adjustable constant. It could be argued that the pre-factor of 32 in the pressure
drop model is not realistic, however, in order to get a better fit, it has to be multiplied by a factor > 100. This is
in our opinion very unrealistic and therefore we believe that the overall absorption rate (physical & chemical) is
limited by the chemical reaction.
In summary, this result can be seen as the direct proportionality between the flux and driving force in case that
the homogeneous reaction rate is slow compared to the mass transfer rate. As the characteristic time increases,
the pressure in the capillary decreases, and hence the driving force decreases. Since the proportionality constant
is unaffected by the changing hydrodynamic conditions, the relation between the driving force and the volumetric
flux is directly observable. Although we suspect that ∆P and t∗ are inversely proportional, the t∗ range is too
small to distinguish the goodness of the fit between ∆P = a+bt∗ and ∆P = a′+b′/t∗. Probably, because the latter
expression can sufficiently be linearized in the studied t∗ range. Nevertheless, directly plotting the flux versus the
pressure drop clearly shows a linear relationship.
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