ELECTRONIC SUPPLEMENTARY INFORMATION

Steric shielding vs $\sigma-\pi$ orbital interactions in triplet-triplet energy transfer

Inmaculada Andreu, Isabel Morera, Fabrizio Palumbo, Germán Sastre, Francisco Bosca, * and Miguel A. Miranda, *

Table of Contents

1. 1H and 13C-NMR spectra of (S)-SUP-α-Ch S2

2. 1H and 13C-NMR spectra of (R)-SUP-α-Ch S3

3. 1H and 13C-NMR spectra of SUP-β-Ch S4

4. 1H and 13C-NMR spectra of TPA-α-Ch$_H$ S5

5. Optimized geometries using PBE-D3 S6

6. Optimized geometries using M062X-D3 S7

7. Optimized geometries using wB97XD S8
(R)-SUP-α-Ch

(CDCl₃, 300 MHz)

(R)-SUP-α-Ch

(CDCl₃, 75 MHz)
Optimized geometries of ground state (S\textsubscript{0}) and triplet excited state (T\textsubscript{1}) of TPA-\(\alpha\)-Ch and TPA-\(\beta\)-Ch using PBE-D3 functional. The effect of solvent has not been included, but the geometries have also been optimized using dichloromethane as solvent with very similar results. In TPA-\(\beta\)-Ch, folded and unfolded have similar energies and for this reason both conformations have been calculated.
Optimized geometries of ground state (S_0) and triplet excited state (T_1) of TPA-α-Ch and TPA-β-Ch using M062X-D3 functional. The effect of solvent has not been included, but the geometries have also been optimized using dichloromethane as solvent with very similar results. In TPA-β-Ch, folded and unfolded have similar energies and for this reason both conformations have been calculated.
Optimized geometries of ground state (S_0) and triplet excited state (T_1) of TPA-α-Ch and TPA-β-Ch using wB97XD functional. The effect of solvent has not been included, but the geometries have also been optimized using dichloromethane as solvent with very similar results. In TPA-β-Ch, folded and unfolded have similar energies and for this reason both conformations have been calculated.