Electronic Supplementary Information

Synthesis and investigation of donor-porphyrin-acceptor triads with long-lived photo-induced charge-separate states

Julien B. Kelber, Naitik A. Panjwani, Di Wu, Rafael Gómez-Bombarelli, Brendon W. Lovett, John J. L. Morton and Harry L. Anderson

TABLE OF CONTENTS

1) General information
2) Characterization of reaction intermediates and new compounds
 (a) 2-[4-Nitrophenyl]isoindoline-1,3-dione-5-benzoic acid (1) S3
 (b) 2-[4-Nitrophenyl]isoindolin-5-yl)methanol (2) S3
 (c) 2-[4-Nitrophenyl]isoindoline-5-carboxaldehyde (3) S5
 (d) 5-Bromo-2-[4-(diethylamino)phenyl]isoindoline-1,3-dione (6) S9
 (e) 5-Bromo-2-[4-(diethylamino)phenyl]-4H-isooindoline (7) S11
 (f) 5-[4,4,5,5-Tetramethyl-1,3,2-dioxaborolan]-2-[4-(diethylamino)phenyl]-4H-isooindoline (8) S13
 (g) 2-Bromoanthracene S15
 (h) 2-Bromoanthracene (mixture with anthracene) (9) S15
 (i) 2-Bromo-5,12-(1,2)benzenotetracene-6,11(5H,12H)-dione S16
 (j) 2-[4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl]-5,12-(1,2)benzenotetracene-6,11(5H,12H)-dione (10) S17
 (k) Bromoporphyrin 12 S19
 (l) TNQ-ZnP$_{ar}$-TAPD S22
 (m) Porphyrin aldehyde 14 S30
 (n) Porphyrin aldehyde 15 S31
 (o) C$_{60}$ZnP$_{ar}$-TAPD S33

3) Synthesis of reference and known compounds
 (a) Porphyrin boronic acids 13 and S1 S37
 (b) 2-[(3,4-Bis(dodecyloxy)benzyl)amino]acetic acid (S3) S37
 (c) Porphyrins S4 and S5 S41

4) Assignment of the TAPD-ZnP$_{ar}$-TNQ triad 1H NMR spectrum using reference compounds S43

5) Frontier orbitals energies of triads

6) Frontier orbitals distribution of triads

7) Ionization potential and electron affinities of moieties

8) Inner-sphere reorganization energies

9) Predicted recombination rates

10) Analysis of the influence of conformational factors on electronic coupling

11) Cambridge database analysis of the dihedral angles between meso-phenyls and porphyrin planes

12) Methods and kinetic modeling of the Electronic Paramagnetic Resonance (EPR) experiments

13) References
1) General information

All chemical reagents were used as received. 2-Bromoanthracene (ref S1) and [5,15-bis-{3,5-bis-tert-butylphenyl}-10,20-bisbromoporphinato]zinc(II) (ref S2) were synthesized following a literature procedure. Dichloromethane (DCM) and tetrahydrofuran (THF) were dried over activated alumina prior to use. Anhydrous N,N-dimethylformamide (DMF), acetic acid, nitrobenzene, pyridine, toluene, xylenes and anhydrous 2-methyltetrahydrofuran (MTHF) were supplied by Aldrich and used without further purification. Purge gas was high purity argon. Chromatography was performed on silica (200–400 mesh). All reported 1H NMR spectra were collected using a 400 MHz (Bruker AVII 400) or a 500 MHz (Bruker AVII 500) spectrometer. Chemical shifts (in the ppm scale) were determined versus TMS using the residual solvent peak as the internal reference ($\text{CHCl}_3, \delta = 7.26$ ppm). Deuterated chloroform was stored over potassium carbonate to avoid any acid trace. The UV/Vis absorption spectra were recorded in MTHF using a Perkin Elmer Lambda 20 UV-Vis Spectrometer. The absorption wavelengths are reported in nm with the extinction coefficient in M$^{-1}$ cm$^{-1}$. Infrared spectra were recorded in the solid state (neat) using a Bruker Tensor27 FTIR spectrometer. Mass spectroscopy was performed either on ESI-TOF (Waters LCT Premier) or on MALDI-TOF (Waters MALDI Micro MX) spectrometer. Preparative scale size exclusion chromatography (SEC) was carried out using BioRad Bio-Beads S-X1 with toluene as eluent. ESR samples were prepared in 3.8 mm quartz tubes, sealed under vacuum and kept at 77 K in the dark.
2) **Characterization of new compounds**

a. 2-(4-Nitrophenyl)isoindoline-1,3-dione-5-benzoic acid (1)

1H NMR; 400MHz; DMSO-d_6+H$_2$O

13C NMR; 100MHz; DMSO-d_6+H$_2$O
This is the measured mass spectrum of your compound.
b. (2-(4-Nitrophenyl)isoindolin-5-yl)methanol (2)

1H NMR; 400MHz; DMSO-d_6+H$_2$O

13C NMR; 100MHz; DMSO-d_6+H$_2$O
[M+H]$^+$ = 271.11
[M+Na]$^+$ = 293.09
c. (2-(4-Nitrophenyl)isoindoline-5-carbaldheyde (3)

1H NMR; 400MHz; CDCl$_3$+ K$_2$CO$_3$

13C NMR; 100MHz; CDCl$_3$+ K$_2$CO$_3$
This is the measured mass spectrum of your compound.

<table>
<thead>
<tr>
<th>Mass (m/z)</th>
<th>Formula</th>
<th>m/z err [ppm]</th>
<th>Mean err [ppm]</th>
<th>std err [ppm]</th>
<th>Conf</th>
<th>mSigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>291.0731</td>
<td>C_{15}H_{12}N_{2}NaO_{3}</td>
<td>3.2</td>
<td>3.5</td>
<td>10.5</td>
<td>even</td>
<td>12.72</td>
</tr>
</tbody>
</table>

Theoretical Isotope model:

- C_{15}H_{12}N_{2}NaO_{3} 291.07
d. 5-Bromo-2-(4-(diethylamino)phenyl)isoindole-1,3-dione (6)
ESI+ HRMS

Mass Spectrum SmartFormula Report

Infra-red vibrational spectroscopy
e. 5-Bromo-2-(4-(diethylamino)phenyl)-4H-isoindoline (7)
f. 5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan)-2-(4-(diethylamino)phenyl)-4H-isoindoline (8)
Infra-red vibrational spectroscopy
g. 2-Bromoanthraquinone

1H NMR; 400MHz; CDCl$_3$+K$_2$CO$_3$

![NMR spectrum of 2-Bromoanthraquinone](image)

h. 2-Bromoanthracene (9) (mixture with anthracene)51

1H NMR; 400MHz; CDCl$_3$+K$_2$CO$_3$

![NMR spectrum of 2-Bromoanthracene](image)
i. 2-Bromo-5,12-[1,2]benzenotetracene-6,11(5H,12H)-dione (mixture with 5,12-[1,2]benzenotetracene-6,11(5H,12H)-dione)

1H NMR; 400MHz; CDCl$_3$ + K$_2$CO$_3$
j. 2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-5,12-[1,2]benzenotetracene-6,11(5H,12H)-dione (10)
ESI+ HRMS

Mass Spectrum SmartFormula Report

Acquisition Date 28/11/2013 09:26:46
Operator Mass Spec
Instrument / Ser# microOTOF 92

Analysis Info
Analysis Name \V:\data\Nov 13\ESI43670_30_01_14487.d
Method 2.5min_cal_sample_pos_naf_05-06-13.m
Sample Name ES43670
Comment

Acquisition Parameter
Source Type ESI
Focus Not active
Scan Begin 100 m/z
Scan End 1000 m/z
Intens. 10^10

This is the measured mass spectrum of your compound.

Theoretical isotope model

Meas. m/z # Formula m/z err [ppm] Mean err [ppm] rdb e° Conf mSigma
483 1 C30 H25 B Na O4 483.1738 -0.0 6.4 18.5 even 26.32

Infra-red vibrational spectroscopy

BRUKER

Transmittance [%]

95
90
85
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0

Wavenumber cm⁻¹

3500
3000
2500
2000
1500
1000
500
k. [5,15-Bis-(3,5-bis-tert-butylphenyl)-10-[5,12-[1,2]-benzenotetracen-2-yl]-6,11(5H,12H)-dione]-20-bromoporphinato]zinc(II) (12)
Simulated for

Centered, Smoothed, Baseline subtracted

Crude MALDI-TOF (positive ionisation) spectrum

Infra-red vibrational spectroscopy
1. [5,15-Bis-(3,5-bis-tert-butylphenyl)-10-[5,12-[1,2]benzenotetracen-2-yl]-6,11(5H,12H)-dione]-20-(4-diethylamino)phenyl]-4H-isoinodolin-2-yl]porphinato]zinc(II) (TNQ-ZnPAr-TAPD)
13C NMR; 125MHz; CDCl$_3$ + 1% Pyridine-d$_5$
MALDI-TOF (positive ionisation) spectrum

Simulated for

Centered, Smoothed, Baseline subtracted

Infra-red vibrational spectroscopy
COSY (1H-1H) 400 MHz, CDCl₃ + 1% Py-d₅
HMBC (1H-13C) 400 MHz, CDCl₃ + 1% Py-d₅
Steady-state absorption spectroscopy of the triad (298K, solvent MTHF)

[Solvent = DCM; T= 298 K]

\[\lambda = 405 \text{nm} \]
\[\varepsilon(405) = 6 \times 10^4 \text{M}^{-1} \text{cm}^{-1} \]

\[\lambda = 426 \text{nm} \]
\[\varepsilon(426) = 6.8 \times 10^4 \text{M}^{-1} \text{cm}^{-1} \]

\[\lambda = 519 \text{nm} \]
\[\varepsilon(519) = 1 \times 10^5 \text{M}^{-1} \text{cm}^{-1} \]

\[\lambda = 558 \text{nm} \]
\[\varepsilon(558) = 3 \times 10^4 \text{M}^{-1} \text{cm}^{-1} \]

\[\lambda = 597 \text{nm} \]
\[\varepsilon(597) = 2 \times 10^4 \text{M}^{-1} \text{cm}^{-1} \]

\[[\text{Triad}] = 10^{-4}\text{M} \]
\[[\text{Triad}] = 10^{-3}\text{M} \]
(Solvent = DCM; T= 298 K)
m. [5,15-Bis-(3,5-bis-tert-butyl-phenyl)-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-20-(4-benzaldehyde)-porphyrinato]zinc(II) (13)
n. [5,15-Bis-{3,5-bis-tert-butylphenyl}-10-{4-carboxyphenyl}-20-{4-(diethylamino)phenyl}-4H-isoindolin-2-yl]porphinato]zinc(II) (14):

\[\text{H NMR ; 400MHz ; CDCl}_3 + 1\% \text{ Pyridine-}d_5\]
13C NMR; 100MHz; CDCl$_3$ + 1% Pyridine-d$_5$ + K$_2$CO$_3$

Simulated for

MALDI-TOF (positive ionisation) spectrum
o. [5,15-Bis-(3,5-bis-tert-butylphenyl)-10-[4-\{N-(3',4'-didodecoxybenzyl)-[60]fullero[c]tetrahydropyrrol-2-yl\}phenyl\}]-20-(4-(diethylamino)phenyl)-4H-isindolin-2-yl]porphinato]zinc(II) (C_{60}-ZnP_{Ar-TAPD})

\[\text{UV-visible absorption spectroscopy; } 5\mu\text{M in DCM; } 298\text{ K; } 120 \text{ nm.min}^{-1}\]
HMRS- MALDI TOF (Swansea National Mass-spectroscopy Facility):
UV-visible absorption spectroscopy; 5 μM in toluene; 298 K; 120 nm.min⁻¹

ZnP Soret band
- λ\text{max} = 422 nm
- ε(422) = 480,000 M⁻¹.cm⁻¹

ZnP Q-band
- λ\text{max} = 512 nm
- ε(512) = 70,000 M⁻¹.cm⁻¹
- λ\text{max} = 552 nm
- ε(552) = 28,000 M⁻¹.cm⁻¹
- λ\text{max} = 592 nm
- ε(592) = 8,000 M⁻¹.cm⁻¹

C₆₀
- λ\text{max} = 704 nm
- ε(704) = 700 M⁻¹.cm⁻¹

Squarewave voltammetry of TAPD-ZnP₅-C₆₀ and related compounds in DCM with 0.1 M Bu₄N PF₆ as electrolyte.

Potential vs Fe⁷⁺/Fe⁶⁺ [V]
3) Synthesis of reference and known compounds

a. \[[5,15\text{-} \text{Bis}(3,5\text{-} \text{bis}\text{-} \text{tert}\text{-} \text{butylphenyl})\text{-}10,20\text{-} \text{Bis}(4,4,5,5\text{-} \text{tetramethyl}\text{-}1,3,2\text{-} \text{dioxaborolan}\text{-}2\text{-} \text{yl})\text{porphinato}]\text{zinc(II)} \times 13 + [5,15\text{-} \text{Bis}(3,5\text{-} \text{bis}\text{-} \text{tert}\text{-} \text{butylphenyl})\text{-}10\text{-} \text{Bis}(4,4,5,5\text{-} \text{tetramethyl}\text{-}1,3,2\text{-} \text{dioxaborolan}\text{-}2\text{-} \text{yl})\text{porphinato}]\text{zinc(II)} \times S1 \]

The procedure was adapted from a formerly reported method53

A dry two-neck flask equipped with a condenser was charged with \([5,15\text{-} \text{Bis}(3,5\text{-} \text{bis}\text{-} \text{tert}\text{-} \text{butylphenyl})\text{-}10,20\text{-} \text{dibromoporphinato}]\text{zinc(II)} \times S2 (400 mg; 440 µmol; 1 eq.) and \textit{trans}-\text{dichlorodi(triphenylphosphine)palladium(II)} (62 mg; 88 µmol; 0.2 eq.). The mixture was purged 3 times with argon and dry toluene (40 mL), dry THF (40 mL) and distilled triethylamine (9 mL; 150 eq.) were added. The solution was purged 5 more times with argon and pinacolborane (2.30 mL; 15.8 mmol; 36 eq.) was added. The reaction mixture was stirred at 68 °C for one day. The excess of pinacolborane was neutralized by adding carefully water (20 mL, dropwise via syringe) at 0 °C. The organic phase was collected, washed three times with water (3 x 20 mL) and brine (20 mL), dried over MgSO\textsubscript{4} and filtered. The solvents were removed under reduced pressure and separation of \textbf{13} and \textbf{S1} was achieved by chromatography (SiO\textsubscript{2}). The first fraction was collected while using dichloromethane 2:1 petroleum ether 40–60°C (\textbf{S1}; red powder; 76 mg; 21%) as eluent and the second fraction was collected while using dichloromethane/methanol 98/2 as eluent (\textbf{13}; pink powder; 326 mg; 74%).

\textit{H NMR (400 MHz, CDCl\textsubscript{3} + 1 % Pyridine-\textsubscript{d}_5):}\ δ = 9.84 (d, 4.6Hz, 4H), 9.03 (d, 4.6Hz, 4H), 8.03 (d, 1.8 Hz, 4H), 7.77 (t, 1.8 Hz, 2H), 1.83 (s, 12H), 1.53 (s, 36H) ppm.

\textit{C NMR (100 MHz, CDCl\textsubscript{3} + 1 % Pyridine-\textsubscript{d}_5):}\ δ = 152.9, 150.0, 147.9, 142.5, 132.3, 132.0, 129.7, 125.2, 121.4, 120.2, 84.8, 34.8, 31.6, 25.1 ppm.
1H NMR; 400MHz; CDCl$_3$ 1% Pyridine-d$_5$

3H NMR; 400MHz; CDCl$_3$ 1% pyridine-d$_5$
b. 2-((3,4-Bis(dodecyloxy)benzyl)amino)acetic acid (S3)

2-((3,4-Bis(dodecyloxy)benzyl)amino)acetic acid S3 was synthesized in two steps: reductive amination of 3,4-didocylbenzaldehyde with glycine ethyl ester and sodium borohydride, followed by saponification of the ester with aqueous sodium hydroxide.

3,4-Didocylbenzaldehyde (1.4 g; 10 mmol; 1.25 eq.) was dissolved in a methanol/dichloromethane (10/1 mixture; 20 mL). Triethylamine (1.4 mL; 10 mmol; 1.25 eq.) and glycine ethyl ester hydrochloride (4.2 g; 8 mmol; 1 eq.) were added. The mixture was stirred for 1 h at room temperature and sodium borohydride (0.72 g; 20 mmol; 2.5 eq.) was then added in portions at 0 °C. The solution was subsequently stirred overnight at room temperature. Water (10 mL) was added and the amino-ester SI2 was extracted with ethyl acetate (2 x 15 mL), washed with water (2 x 10 mL) and brine (1 x 10 mL), dried over MgSO$_4$ and filtrated. The solvent was evaporated, and S2 was further purified by chromatography (SiO$_2$; Eluent 1 = petroleum ether 40–60 °C /ethyl acetate 4/1 to remove the remaining starting material; Eluent 2 = petroleum ether 40–60 °C /ethyl acetate 1/1 to get the desired product). This yielded S2 as a pale yellow oil, which was then added mixture of aqueous concentrate sodium hydroxide (10 mL; 277 mmol) and methanol (5 mL). The suspension was then vigorously stirred 2 days at 70 °C and the solution was neutralized at 0 °C with concentrated aqueous hydrochloric acid (23.1 mL; 277 mmol). The precipitate was then filtered-off, washed several time with water until the pH of the mother-liquid reaches 7, and dried under vacuum over P$_2$O$_5$ to yield S3 as a white powder (3.4 g; 6.3 mmol; 79%).

1H NMR ; 400MHz ; CDCl$_3$+ TFA

![NMR spectra](image-url)
13C NMR; 100MHz; CDCl$_3$ + 1% Pyridine-d$_5$

Infra-red vibrational spectroscopy (neat)

-OH stretch monomer

-OH stretch dimer
A dry two-neck flask equipped with a condenser was charged with S1 (100 mg; 114 μmol; 1 eq.), 7 (47 mg; 136 μmol; 1.2 eq.), freshly recrystallized tetrakistriphenylphosphine palladium(0) (13 mg; 11.4 μmol; 0.1 eq.) and cesium carbonate (111 mg; 342 μmol; 3 eq.). The mixture was purged 3 times with argon and a mixture of toluene (10 mL) and pyridine (150 μL) was added. The solution was purged 5 more times with argon and the reaction mixture was refluxed for 7 h. The solvent was evaporated and the product was purified by chromatography (SiO₂) using dichloromethane 98 : 2 methanol as eluent and further purified by size-exclusion column (eluent chloroform +1% pyridine) to yield after drying under vacuum S4 as purple powder (95 mg; 93 μmol; 82%).

\[^1H\text{NMR (400 MHz, CDCl}_3 + 1\% \text{Pyridine-d}_5\):} δ = 10.16 (s, 1H), 9.36 (d, 4.5 Hz, 2H), 9.11 (d, 4.5 Hz, 2H), 9.02 (d, 4.5 Hz, 2H), 8.96 (d, 4.5 Hz, 2H), 8.17 (m, 2H), 8.12 (d, 1.8 Hz, 4H), 7.82 (t, 1.8 Hz, 2H), 7.65 (d, 8.3 Hz, 1H), 6.92 (m, 2H), 8.77 (m, 2H), 4.93 (s, 2H), 4.89 (s, 2H), 1.58 (s, 36H) ppm.

A dry two-neck flask equipped with a condenser was charged with S1 (10.0 mg; 11.4 μmol; 1 eq.), 7-bromo-triptycenenaphthoquinone (intermediate in the synthesis of 10, mixture with triptycenenaphthoquinone, 6.1 mg; 13 μmol; 1.2 eq.), freshly recrystallized tetrakistriphenylphosphine palladium(0) (1.2 mg; 1.1 μmol; 0.1
and cesium carbonate (10.8 mg; 33.1 μmol; 3.0 eq.). The mixture was purged 3 times with argon and a mixture of toluene (2 mL) and pyridine (30 μL) was added. The solution was purged 5 more times with argon and the reaction mixture was refluxed for 2 days. The solvent was evaporated and the product was purified by chromatography (SiO₂) using dichloromethane 3 : 1 petrol ether 40–60°C as eluent to yield after drying under vacuum S15 as purple powder (7.1 mg; 6.6 μmol; 60%).

\(^1\)H NMR (400 MHz, CDCl₃ + 1 % Pyridine-d₅): δ = 10.11 (s, 1H), 9.31 (d, 4.6 Hz, 1H), 9.30 (d, 4.6 Hz, 1H), 9.04 (d, 4.6 Hz, 1H), 8.86 (d, 4.6 Hz, 1H), 8.85 (d, 4.6 Hz, 1H), 8.76 (d, 4.6 Hz, 1H), 8.73 (d, 4.6 Hz, 1H), 8.28 (d, 1.6 Hz, 1H), 8.18 (m, 1H), 8.11 (m, 1H), 8.04 (m, 2H), 8.02 (m, 2H), 7.88 (dd, 7.2 Hz, 1.6 Hz, 1H), 7.77 (d, 7.2 Hz, 1H), 7.73 (m, 4H), 7.66 (m, 1H), 7.55 (dd, 7.2 Hz, 1.2 Hz, 1H), 7.16 (m, 2H), 6.31 (s, 1H), 6.15 (s, 1H), 1.52 (s, 9H), 1.51 (s, 9H), 1.50 (s, 9H), 1.49 (s, 9H) ppm.
4) Assignment of the TAPD-ZnP_A-TNQ triad 1H NMR spectrum using reference compounds
5) Frontier orbital energies

<table>
<thead>
<tr>
<th></th>
<th>TNQ-ZnP-TAPD</th>
<th>TNQ-ZnP(_{Ar})-TAPD</th>
<th>C({60})-ZnP({Ar})-TAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO–2</td>
<td>-4.90</td>
<td>-5.08</td>
<td>-5.12</td>
</tr>
<tr>
<td>HOMO–1</td>
<td>-4.79</td>
<td>-4.92</td>
<td>-4.95</td>
</tr>
<tr>
<td>HOMO</td>
<td>-4.35</td>
<td>-4.25</td>
<td>-4.27</td>
</tr>
<tr>
<td>LUMO</td>
<td>-3.02</td>
<td>-3.07</td>
<td>-3.10; -2.99; -2.75*</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>-1.82</td>
<td>-2.08</td>
<td>-2.10</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>-1.80</td>
<td>-2.05</td>
<td>-2.09</td>
</tr>
</tbody>
</table>

* The LUMO of C\(_{60}\) is triply degenerate, but the saturation at the pyrrolidine linking breaks the symmetry.

<table>
<thead>
<tr>
<th></th>
<th>TNQ-ZnP-TAPD</th>
<th>TNQ-ZnP(_{Ar})-TAPD</th>
<th>C({60})-ZnP({Ar})-TAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO–2</td>
<td>-5.91</td>
<td>-6.04</td>
<td>-6.08</td>
</tr>
<tr>
<td>HOMO–1</td>
<td>-5.71</td>
<td>-5.86</td>
<td>-5.89</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.66</td>
<td>-5.62</td>
<td>-5.85</td>
</tr>
<tr>
<td>LUMO</td>
<td>-2.12</td>
<td>-2.09</td>
<td>-2.61 / -2.47 / -2.21</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>-1.34</td>
<td>-1.59</td>
<td>-1.64</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>-1.33</td>
<td>-1.57</td>
<td>-1.62</td>
</tr>
</tbody>
</table>

CAM–B3LYP /6-31G*

<table>
<thead>
<tr>
<th></th>
<th>TNQ-ZnP-TAPD</th>
<th>TNQ-ZnP(_{Ar})-TAPD</th>
<th>C({60})-ZnP({Ar})-TAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO–2</td>
<td>-5.90</td>
<td>-5.98</td>
<td>-6.02</td>
</tr>
<tr>
<td>HOMO–1</td>
<td>-5.66</td>
<td>-5.89</td>
<td>-5.93</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.61</td>
<td>-5.59</td>
<td>-5.78</td>
</tr>
<tr>
<td>LUMO</td>
<td>-1.84</td>
<td>-1.81</td>
<td>-2.14 / -1.99 / -1.73</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>-0.96</td>
<td>-1.20</td>
<td>-1.24</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>-0.96</td>
<td>-1.18</td>
<td>-1.22</td>
</tr>
</tbody>
</table>

ω-B97xD/6-31G*

<table>
<thead>
<tr>
<th></th>
<th>TNQ-ZnP-TAPD</th>
<th>TNQ-ZnP(_{Ar})-TAPD</th>
<th>C({60})-ZnP({Ar})-TAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO–2</td>
<td>-4.90</td>
<td>-6.51</td>
<td>-6.55</td>
</tr>
<tr>
<td>HOMO–1</td>
<td>-4.79</td>
<td>-6.38</td>
<td>-6.42</td>
</tr>
<tr>
<td>HOMO</td>
<td>-4.35</td>
<td>-6.17</td>
<td>-6.41</td>
</tr>
<tr>
<td>LUMO</td>
<td>-3.02</td>
<td>-1.27</td>
<td>-1.71 / -1.55 / -1.29</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>-1.82</td>
<td>-0.74</td>
<td>-0.78</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>-1.80</td>
<td>-0.71</td>
<td>-0.75</td>
</tr>
</tbody>
</table>

HF/6-31G*

<table>
<thead>
<tr>
<th></th>
<th>TNQ-ZnP-TAPD</th>
<th>TNQ-ZnP(_{Ar})-TAPD</th>
<th>C({60})-ZnP({Ar})-TAPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO–2</td>
<td>-6.43</td>
<td>-6.48</td>
<td>-6.51</td>
</tr>
<tr>
<td>HOMO–1</td>
<td>-5.64</td>
<td>-5.93</td>
<td>-5.95</td>
</tr>
<tr>
<td>HOMO</td>
<td>-6.69</td>
<td>-7.32</td>
<td>-7.29</td>
</tr>
<tr>
<td>LUMO</td>
<td>0.75</td>
<td>0.83</td>
<td>-0.18 / -0.05 / 0.33</td>
</tr>
<tr>
<td>LUMO+1</td>
<td>1.04</td>
<td>0.76</td>
<td>0.74</td>
</tr>
<tr>
<td>LUMO+2</td>
<td>1.10</td>
<td>0.77</td>
<td>0.80</td>
</tr>
</tbody>
</table>
6) Frontier orbitals distribution

a. Triad TNQ-ZnP-TAPD

HOMO-2: -5.99 eV
HOMO: -5.63 eV
LUMO+1: -1.05 eV

b. Triad TNQ-ZnP_Ar-TAPD

HOMO-2: -5.99 eV
HOMO: -5.63 eV
LUMO+1: -1.20 eV
c. Triad C_{60}-ZnP$_{Ar}$-TAPD
7) Ionization energy and electron affinity of moieties

<table>
<thead>
<tr>
<th></th>
<th>6-31G*, PCM in butyronitrile</th>
<th>6-31G*, PCM in acetonitrile</th>
<th>6-31G*, PCM in tetrahydrofuran</th>
<th>6-31G*, Gas Phase</th>
<th>6-311G**, PCM in butyronitrile</th>
<th>6-311G**, PCM in acetonitrile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IP</td>
<td>EA</td>
<td>IP</td>
<td>EA</td>
<td>IP</td>
<td>EA</td>
</tr>
<tr>
<td>TADP</td>
<td>4.24</td>
<td>4.42</td>
<td>4.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnP Ar</td>
<td>4.98</td>
<td>−2.48</td>
<td>5.16</td>
<td>−2.43</td>
<td>4.95</td>
<td>−2.75</td>
</tr>
<tr>
<td>ZnP</td>
<td>4.72</td>
<td>−2.31</td>
<td>5.03</td>
<td>−2.22</td>
<td>4.81</td>
<td>−2.47</td>
</tr>
<tr>
<td>TNQ</td>
<td>−3.37</td>
<td>−3.48</td>
<td>−3.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C₆₀</td>
<td>−3.03</td>
<td>−3.31</td>
<td>−3.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8) Inner-sphere reorganization energies

We report inner-sphere reorganization energies at several levels of theory and solvent combinations for the moieties. These were computed as $\lambda_S = E_R^S - E_P^S$, where R and P represent reaction and product, and S represents the potential energy surface: either the charged ($-1e$ or $+1e$, for anion and cation respectively), or the neutral surfaces (N).

<table>
<thead>
<tr>
<th>Reorganization Energy (eV)</th>
<th>CAM-B3LYP</th>
<th>B3LYP</th>
<th>M062X</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM-B3LYP</td>
<td>B3LYP</td>
<td>M062X</td>
<td></td>
</tr>
<tr>
<td>6-31G*, PCM in Gas Phase</td>
<td>-1 e</td>
<td>N</td>
<td>+1 e</td>
</tr>
<tr>
<td>TAPD</td>
<td>0.35</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>TNQ</td>
<td>0.26</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td>B3LYP</td>
<td>M062X</td>
<td></td>
</tr>
<tr>
<td>6-31G*, PCM in THF</td>
<td>-1 e</td>
<td>N</td>
<td>+1 e</td>
</tr>
<tr>
<td>TADP</td>
<td>0.37</td>
<td>0.22</td>
<td>0.29</td>
</tr>
<tr>
<td>ZnP$_{Ar}$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>TNQ</td>
<td>0.26</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>C_{60}</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td>B3LYP</td>
<td>M062X</td>
<td></td>
</tr>
<tr>
<td>6-31G*, PCM in butyronitrile</td>
<td>-1 e</td>
<td>N</td>
<td>+1 e</td>
</tr>
<tr>
<td>ZnP$_{Ar}$</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>C_{60}</td>
<td>0.09</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>CAM-B3LYP</td>
<td>B3LYP</td>
<td>M062X</td>
<td></td>
</tr>
<tr>
<td>6-31G*, PCM in acetonitrile</td>
<td>-1 e</td>
<td>N</td>
<td>+1 e</td>
</tr>
<tr>
<td>TADP</td>
<td>0.37</td>
<td>0.22</td>
<td>0.29</td>
</tr>
<tr>
<td>ZnP$_{Ar}$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
</tr>
<tr>
<td>ZnP</td>
<td>0.06</td>
<td>0.06</td>
<td>0.19</td>
</tr>
<tr>
<td>TNQ</td>
<td>0.26</td>
<td>0.25</td>
<td>0.21</td>
</tr>
<tr>
<td>C_{60}</td>
<td>0.07</td>
<td>0.07</td>
<td>0.09</td>
</tr>
</tbody>
</table>

CAM-B3LYP	B3LYP	M062X							
6-311G**, PCM in THF	-1 e	N	+1 e	-1 e	N	+1 e	-1 e	N	+1 e
TADP	0.39	0.23	0.31	0.18	0.46	0.24			
TNQ	0.28	0.28	0.23	0.23	0.29	0.28			
C_{60}	0.07								
CAM-B3LYP	B3LYP	M062X							
6-311G**, PCM in acetonitrile	-1 e	N	+1 e	-1 e	N	+1 e	-1 e	N	+1 e
TADP	0.40	0.27	0.31	0.18	0.47	0.24			
TNQ	0.28	0.28	0.23	0.23	0.29	0.28			
C_{60}	0.07	0.07	0.08	0.09					
9) Predicted Recombination Rates

We report here the recombination rates from the long-lived radical pair state to the ground state, and the parameters used for that prediction:

- ΔG corresponds to the electronic energy difference between the ground state and the charge transfer state in solution (butyronitrile) at their respective equilibrium geometries. It corresponds to the energy difference between the bottoms of the parabola in the Marcus approximation.
- λ_{out} corresponds to the outer-sphere reorganization energy in upon electron transfer in solution. In frozen solvent, it is added to ΔG, to obtain the effective ΔG in frozen solvent, to capture the fact that only the electronic degrees of freedom of the solvent can respond to the charge transfer.
- $\lambda_{\text{in}}^{\text{vib}}$ corresponds to the inner-sphere reorganization calculated as $\langle \lambda_i = \sum S_j \mu_{ij} \rangle$. We report different values depending of the energy surface on which the vibrational modes were calculated (the neutral or the charge-transfer species) and also depending on whether whole triads were used, or only the displacements and vibrational motions of isolated donor and acceptor units.
- Exclusively for reference, since it does not play any role in the calculation of the lifetimes, we report $\lambda_{\text{in}}^{\text{diff}}$. This magnitude corresponds to the energy differences between potential energy surfaces at either the reactant or product equilibrium geometry. They are reported above and included here for comparison with the values calculated from vibronic displacements.

Predicted recombination lifetimes for the TNQ-ZnP$_{Ar}$-TAPD triad

<table>
<thead>
<tr>
<th>Method</th>
<th>State</th>
<th>Parts</th>
<th>ΔE (eV)</th>
<th>λ_{out} (eV)</th>
<th>$\lambda_{\text{in}}^{\text{vib}}$ (eV)</th>
<th>$\lambda_{\text{in}}^{\text{diff}}$ (eV)</th>
<th>Lifetime (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMB3LYP</td>
<td>Neutral</td>
<td>Parts</td>
<td>0.79</td>
<td>1.38</td>
<td>0.52</td>
<td>0.48</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.79</td>
<td>1.38</td>
<td>0.52</td>
<td>0.48</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>Parts</td>
<td>0.79</td>
<td>1.38</td>
<td>0.62</td>
<td>0.62</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.79</td>
<td>1.38</td>
<td>0.57</td>
<td>0.48</td>
<td>0.3</td>
</tr>
<tr>
<td>M062X</td>
<td>Neutral</td>
<td>Parts</td>
<td>0.85</td>
<td>1.32</td>
<td>0.59</td>
<td>0.50</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.85</td>
<td>1.32</td>
<td>0.69</td>
<td>0.49</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>Parts</td>
<td>0.85</td>
<td>1.32</td>
<td>0.71</td>
<td>0.70</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.85</td>
<td>1.32</td>
<td>0.59</td>
<td>0.70</td>
<td>0.6</td>
</tr>
<tr>
<td>B3LYP</td>
<td>Neutral</td>
<td>Parts</td>
<td>0.72</td>
<td>1.27</td>
<td>0.43</td>
<td>0.38</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.72</td>
<td>1.27</td>
<td>0.44</td>
<td>0.38</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>Parts</td>
<td>0.72</td>
<td>1.27</td>
<td>0.51</td>
<td>0.50</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whole</td>
<td>0.72</td>
<td>1.27</td>
<td>0.48</td>
<td>0.50</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Predicted recombination lifetimes for the TNQ-ZnP\textsubscript{Ar}-TAPD triad

<table>
<thead>
<tr>
<th>Method</th>
<th>State</th>
<th>Parts</th>
<th>(\Delta E) (eV)</th>
<th>(\lambda_{\text{out}}) (eV)</th>
<th>(\lambda_{\text{in}}^{\text{vib}}) (eV)</th>
<th>(\lambda_{\text{in}}^{\text{diff}}) (eV)</th>
<th>Lifetime (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAMB3LYP</td>
<td>Neutral Parts</td>
<td>1.01</td>
<td>1.25</td>
<td>0.35</td>
<td>0.31</td>
<td>1475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole Parts</td>
<td>1.01</td>
<td>1.25</td>
<td>0.38</td>
<td>0.31</td>
<td>443</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole</td>
<td>1.01</td>
<td>1.25</td>
<td>0.44</td>
<td>0.46</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>M062X</td>
<td>Neutral Parts</td>
<td>0.92</td>
<td>1.21</td>
<td>0.40</td>
<td>0.32</td>
<td>278</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole Parts</td>
<td>0.92</td>
<td>1.21</td>
<td>0.43</td>
<td>0.31</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole</td>
<td>0.92</td>
<td>1.21</td>
<td>0.53</td>
<td>0.53</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>B3LYP</td>
<td>Neutral Parts</td>
<td>0.75</td>
<td>1.21</td>
<td>0.27</td>
<td>0.24</td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole Parts</td>
<td>0.75</td>
<td>1.21</td>
<td>0.28</td>
<td>0.24</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Whole</td>
<td>0.75</td>
<td>1.21</td>
<td>0.34</td>
<td>0.36</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>

10) Analysis of the Influence of Conformational Factors on Electronic Coupling

Figure S1. Ground state DFT/B3LYP/6-31G*\(^*\) energy of TNQ-ZnP\textsubscript{Ar}-TAPD as a function of dihedral angle. The more co-planar conformations only occur at a high-energy cost. There is a single overall minimum described with dihedral angles at around 70 degrees.

Figure S2. Excitation energy to the CSS\textsubscript{2} charge-transfer state TD-DFT/B3LYP/6-31G*\(^*\) energy of TNQ-ZnP\textsubscript{Ar}-TAPD as a function of dihedral angle, in fluid solution. The energy of the excited state (essentially Coulombic in nature) is hardly affected by the dihedral angle, especially since the \(\pi \) systems remained isolated even in the more planar conformations.
Figure S3. Relative population of TNQ-ZnP\textsubscript{Ar}-TAPD, form the Boltzmann distribution, a) at 298 K and b) at 223 K (melting point of xylene) and c) at 10 K. For slower cooling rates that thermal distribution at which the conformations are effectively frozen is expected to correspond to different temperatures. In all cases the only minimum has a dominating contribution.

Figure S4. Relative GMH electronic coupling V_{DA} in TNQ-ZnP\textsubscript{Ar}-TAPD as a function of the dihedral angles. As explained by the lack of extended conjugation, the dihedral angle has a modest effect on electronic coupling. Bis-\textit{tert}-butylphenyl groups were removed to reduce the cost of simulation. 10-degree steps were used, for a total of 64 data points. Electronic coupling was calculated as described in the manuscript. The shape of the potential energy surface, in combination with the reduced effect of geometry on the electronic coupling, results in the Boltzmann-weighted electronic coupling being within 5% of the electronic coupling for the minimum-energy conformation.

The following up-to-date Cambridge database search results are consistent with earlier studies.54

In β-alkyl substituted porphyrins (bin size of 2°, total number of structures: 343)

\textit{Figure S5.} Frequency of dihedral angle between porphyrin and phenyl planes in β-alkyl meso-(ortho-unsubstitutedphenyl)porphyrins

In β-unsubstituted porphyrins (bin size of 2°, total number of structures: 1032).

\textit{Figure S6.} Frequency of dihedral angle between porphyrin and phenyl planes in β-H meso-(ortho-unsubstitutedphenyl)porphyrins
12) Methods and kinetic model fit of the EPR experiments

a. EPR methods:
EPR samples were prepared in 3.8 mm quartz EPR tubes, samples were degassed using several freeze pump thaw cycles and sealed under vacuum. The samples were stored at 77 K in the dark.

EPR experiment were carried out at 10 K on a Bruker ELEXSY E580 spectrometer operating at X-band equipped with an MD5 dielectric resonator, Oxford Instruments continuous flow cryostat and ITCS03 temperature controller. Laser excitation of the samples was provided by a Surelite OPO system, pumped by a Surelite I-20 Q-switched Nd:YAG laser, with a variable repetition rate. The photo-excitation wavelength was around 590 nm with a pulse energy of around 10 mJ per pulse and pulse width of 7 ns. Experiments on TNQ-ZnP$_{Ar}$-TAPD, ZnTPP, C$_{60}$-ZnP$_{Ar}$-H were carried out with the laser repetition rate at 20 Hz, while experiments on C$_{60}$-ZnP$_{Ar}$-TAPD was carried out with a repetition rate of 1 Hz, due to the long lifetime of the charge separation state.

b. Simulations:
Time resolved EPR spectra were simulated using the EasySpin toolbox55 in MATLAB, simulated spectra were used to determine the zero field splitting parameters (ZFS) and the polarization of the triplet states seen in TNQ-ZnP$_{Ar}$-TAPD, ZnTPP and C$_{60}$-ZnP$_{Ar}$-TAPD.

The time resolved EPR spectrum for both the TNQ-ZnP$_{Ar}$-TAPD triad and the reference sample ZnTPP, taken 1 μs after the laser flash, only showed a porphyrin triplet state. The porphyrin triplet for both EPR spectra was simulated using the same g tensors and relative sublevel populations, ZFS parameters used and relative populations of sublevels are shown in Table 1.

The time resolved EPR spectrum for the C$_{60}$-ZnP$_{Ar}$-TAPD triad showed a C$_{60}$ triplet and a spin polarized radical pair signal corresponding to the C$_{60}$ anion. The C$_{60}$ triplet signal seen in the spectrum, taken 1.2 μs after the laser flash, was simulated with the parameters in Table 1. The ZFS parameters and the relative triplet polarization is consistent with literature values for a C$_{60}$-pyrrolidine mono-adduct, while the negative sign for D is consistent with that of C$_{60}$, determined by ENDOR.511

<table>
<thead>
<tr>
<th>Table 1</th>
<th>D/MHz</th>
<th>E/MHz</th>
<th>$p_x : p_y : p_z$</th>
<th>$g_x : g_y : g_z$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNQ2ZnP${Ar}$-TAPD</td>
<td>910a</td>
<td>287b</td>
<td>0.18 : 0.0 : 0.82</td>
<td>2.005 : 2.000 : 2.000</td>
<td>This work</td>
</tr>
<tr>
<td>3ZnTPP</td>
<td>928a</td>
<td>295b</td>
<td>0.18 : 0.0 : 0.82</td>
<td>2.005 : 2.000 : 2.000</td>
<td>This work</td>
</tr>
<tr>
<td>TNQ2ZnP${-}$TAPD</td>
<td>1079</td>
<td>327</td>
<td>0.35 : 0.00 : 0.65</td>
<td></td>
<td>S6</td>
</tr>
<tr>
<td>3ZnTPP</td>
<td>893</td>
<td>294</td>
<td>0.0 : 0.0 : 1.0</td>
<td></td>
<td>S7</td>
</tr>
<tr>
<td>3ZnTPP</td>
<td>888</td>
<td></td>
<td></td>
<td></td>
<td>S8</td>
</tr>
<tr>
<td>3C${60}$ZnP${Ar}$-TAPD</td>
<td>-272^{c}</td>
<td>39</td>
<td>0.28 : 0.72 : 0.00</td>
<td>2.001 : 2.001 : 2.003</td>
<td>This work</td>
</tr>
<tr>
<td>3C$_{60}$pyrrolidine</td>
<td>-234^{c}</td>
<td>30</td>
<td>0.23 : 0.87 : 0.00</td>
<td></td>
<td>S9</td>
</tr>
<tr>
<td>3C$_{60}$pyrrolidine</td>
<td>270</td>
<td>-42^{c}</td>
<td></td>
<td></td>
<td>S10</td>
</tr>
</tbody>
</table>

a Gaussian distribution of D with a FWHM of 70 MHz
b Gaussian distribution of E with a FWHM of 20 MHz
c Gaussian distribution of D with a FWHM of 60 MHz.
c. **Flash-delay experiment – kinetic model fit for CSS decay:**

Change in population of sub-levels in 4-level system of Radical Pair:

\[\begin{align*}
\frac{dP_1}{dt} &= (P_2 + P_3) \frac{k_{r lx}}{2} - P_1 (k_{r lx} + k_T) \\
\frac{dP_2}{dt} &= (P_1 + P_4) \frac{k_{r lx}}{2} - P_2 (k_{r lx} + k_2) \\
\frac{dP_3}{dt} &= (P_1 + P_4) \frac{k_{r lx}}{2} - P_3 (k_{r lx} + k_3) \\
\frac{dP_4}{dt} &= (P_2 + P_3) \frac{k_{r lx}}{2} - P_4 (k_{r lx} + k_T)
\end{align*} \]

Where

\[k_2 = k_s \cos^2 \theta + k_T \sin^2 \theta \]
\[k_3 = k_s \sin^2 \theta + k_T \cos^2 \theta \]
\[k_{r lx} = \frac{1}{T_1} \]

and \(k_s \) and \(k_T \) are the singlet and triplet recombination rates respectively.

We assume no recombination from the pure triplet levels \((P_1 \) and \(P_4 \)) and therefore the fast and slow decay seen experimentally must be due to \(k_s \) and \(k_{r lx} \), therefore \(k_s \gg k_{r lx} \). Since triplet recombination is not allowed we can say \(k_2 \approx k_3 \approx k_s \).

The emission peak intensity is given by \(I_{34}(t) = C_{34} (P_4(t) - P_3(t)) \) and where \(C_{34} \) is the transition probability.

Substituting for \(P_4(t) \) and \(P_3(t) \) gives:

\[I_{34}(t) = C_{34} (P_4 e^{-(k_{r lx})t} - P_3 e^{-(k_s)t}) \] \hspace{1cm} (S1)

We solve equation (S1) analytically, with the addition of a Gaussian distribution in the rate constants \(k_{r lx} \) and \(k_s \), and fit this model to the experimental trace. The fit result gives:

\[k_s = k_{fast} = 1.8 \times 10^5 \text{ s}^{-1} \] with one standard deviation of \(0.7 \times 10^5 \text{ s}^{-1} \).
$k_{\text{flox}} = k_{\text{slow}} = 64 \text{ s}^{-1}$ with one standard deviation of 32 s$^{-1}$.

d. **Spin polarized radical pair signal:**
The central emission/absorption peak centered at $g = 1.9999$ can be attributed to the C$_{60}^-$ anion, since the g factor matches those previously reported in literature and also as we do not expect to see the TAPD$^+$ cation ($g = 2.0023–2.0030$), due to hyperfine broadening.$^{56,513–16}$

Magnetic field calibration using 31P in 28Si.

e. **Estimation of the Quantum Yield for Formation of CSS$_2$ in C$_{60}$-ZnP$_{Ar}$-TAPD:**
The quantum yield was estimated from the area of the signal from the charge-separated state (CSS), as a percentage of the total area of the time-resolved EPR spectrum (trEPR).

The central part of the trEPR spectrum was fitted to a 3rd order polynomial and two Gaussians (Gaussian 1, blue: emissive, and Gaussian 2, cyan: absorptive; Figure S7).

The quantum yield was estimated as the sum of the areas of the two Gaussians (Gaussian 1 + Gaussian 2) divided by the total area, giving a value of about 0.1.

This estimate assumes that formation of CSS$_2$ and the C$_{60}$ triplet are the dominant decay channels, and that these two species have similar polarizations.

Figure S7. Time-resolved EPR spectrum C$_{60}$-ZnP$_{Ar}$-TAPD, taken 1.2 μs after laser flash: (a) Central feature, showing experimental data (red), fitting with 3rd order polynomial and two Gaussians (black), 3rd order polynomial (green), Gaussian 1 – emissive peak (blue) and Gaussian 2 – absorptive peak (cyan). (b) Whole spectrum showing Gaussian 1 – emissive peak (blue line), Gaussian 2 – absorptive peak (cyan line). Absolute area taken of shaded regions.
13) Supporting References