SUPPORTING INFORMATION

High Symmetry or Low Symmetry, It Is a Question – High Performance Dy(III) Single-ion Magnets by Electrostatic Potential Design

Wen-Bin Sun, ^{a,b} Peng-Fei Yan,^b Shang-Da Jiang,^a Bing-Wu Wang, ^{*a} Yi-Quan Zhang, ^a Hong-Feng Li, ^b Peng Chen, ^b Zhe-Ming Wang ^a and Song Gao^{*a}

^a Beijing National Laboratory of Molecular Science State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University Beijing 100871, P. R. China. Fax: (+86) 10-6275-1708; Tel: (+86) 10-6276-7569; E-mail: wangbw@pku.edu.cn and gaosong@pku.edu.cn

^b Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, Heilongjiang University, Harbin 150080, P. R. China.

	1	2	3	4	
Empirical	$C_{44}H_{36}Cl_{3}DyN_{4}O_{10}$			$C_{44}H_{48}Cl_3DyN_4O_8Zn_2$	
formula	Zn ₂	$C_{45}H_{44}Br_3DyN_4O_{11}Zn_2$	$C_{44}H_{38}Br_5DyN_4O_9Zn_3$		
FW (g mol ⁻¹)	1180.40	1349.81	1524.95	1160.45	
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic	
Space group	C2/c	P-1	P21/c	C 2/c	
Temperature(K)	293(2)	293(2)	293(2)	293(2)	
a (Å)	16.203(3)	10.6840(4)	12.6367(6)	16.2823(6)	
b (Å)	22.757(5)	15.3563(7)	16.8613(8)	23.8976(10)	
c (Å)	14.315(3)	16.5041(6)	23.4058(12)	14.0704(6)	
α (°)	90.00	92.185(4)	90.00	90.00	
β (°)	104.77(3)	108.231(4)	104.117(5)	104.843(4)	
γ (°)	90.00	99.113(4)	90.00	90.00	
V (Å ³)	5104.0(18)	2528.26(18)	4836.5(4)	5292.2(4)	
$ ho_{cacd}$ (Mg cm ⁻³)	1.515	1.773	1.940	1.456	
μ (mm ⁻¹)	2.590	4.833	6.116	2.496	
F (000)	2307	1322	2732	2324	
Collected	22925	24055	24215	11(20	
reflections	23833	24055	34213	11638	
Independent	5704	11400	10425	5007	
reflections	5794	11499	10423	388/	
Rint	0.0620	0.0978	0.0713	0.0350	
R1 [I > $2\sigma(I)$]	0.0402	0.0811	0.0517	0.0366	

Table S1 Crystallographic data for 1-4

wR2 (all data)	0.0976	0.2321	0.1346	0.0947
Goodness of fit on F ²	1.037	1.033	1.060	1.081

Table S2 Continuous Shape Measures (CShMs) of the coordination geometry for Dy(III) ion in compounds 1-4 (S values calculated with the Shape program). The *S* values indicated the proximity to the ideal polyhedron, thus, an S = 0 corresponds to the non-distorted polyhedron. The three closer ideal geometries to the real complexes are listed

	1	2		3	4
CSAPR-9	3.437	2.841		2.115	3.452
TCTPR-9	3.566	3.625		2.124	3.592
MFF-9	3.321	2.635		2.461	3.280
CSAPR-9	C4v	Spherical capped square antiprism			
TCTPR-9	D3h	Spherical tricapped trigonal prism			
MFF-9	Cs		Muffin		

Table S3 Deviations (Å) from the ideal plane defined by five coordination atoms. The positive value denotes that the oxygen atom is located on the same side of the Ln atom, whereas a negative value denotes that the atom is located on the opposite side

coordination	1	4	coordination	2	3
atoms			atoms		
Cl2	0.0000	-0.0000	09	0.1446	0.6312
04	-0.1324	-0.1443	04	-0.2430	-0.0207
03'	0.2293	0.2279	08	0.1694	-0.2311
03	-0.2293	-0.2279	03	-0.2161	0.3387
O4'	0.1324	0.1443	07	0.0481	-0.4163

Table S4 Mulliken charges of atoms in the ground state of 1-4 obtained at CASSCF/ANO-RCC level of theory

Coordination Atoms		1	2	3	4	
0		0	-1.0590	-1.0670	-1.0646	-1.0727
Phenoxyl oxygen O		0	-1.0332	-1.0361	-1.0461	-1.0322
atoms		0	-1.0592	-1.0665	-1.0644	-1.0728
		0	-1.0332	-1.0384	-1.0493	-1.0318
Average			-1.0462	-1.0520	-1.0561	-1.0523
N	Methoxyl	0	-0.8146	-0.8358	-0.8336	-0.8457
		0	-0.8345	-0.8563	-0.8320	-0.8150
Forming	oxygen	0	-0.8146	-0.8479	-0.8476	-0.8459
the hard	atoms	0	-0.8346	-0.8457	-0.8331	-0.8152
plane	Cl for 1 a	nd 4 ,	O -0.7780	-0.7416	-0.5550	-0.7850
	for 2 and 3					
	Average		-0.8153	-0.8255	-0.7803	-0.8214

	c + b a	b - a		c -b a
	1	2	3	4
g _x	0.0000	0.0012	0.0023	0.0002
$g_{ m y}$	0.0002	0.0018	0.0036	0.0005
g_{z}	19.9615	19.8462	19.7884	19.9658
ΔE	355.6	351.8	313.0	351.9

Table S5 The orientation of local magnetic moment in 1-4 (dark blue arrow), g values and calculated energy difference (ΔE , cm⁻¹) between the ground state and first excited state

 Table S6 The curves are fitted by the modified Arrhenius relationship the Raman process is taken account

 $1/\tau = CT^{\rm n} + \tau_0^{-1} \exp(-U_{\rm eff}/\kappa_{\rm B}T)$

dc filed	\mathbf{C} (s ⁻¹ ·K ⁻ⁿ)	n	$ au_{0}(s)$	$U_{\mathrm{eff}}/\kappa_{\mathrm{B}}\left(\mathrm{K}\right)$
0 Oe	7.9×10 ⁻⁵	4.4	7.4×10 ⁻¹¹	430
1000 Oe	1.1×10 ⁻⁷	6.5	1.3×10 ⁻¹¹	481
Zero field for dilution sample	1.0×10 ⁻⁶	5.8	7.0×10 ⁻¹¹	434

Fig. S1 The structure for 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right), hydrogen atoms and counter anions are omitted for clarity.

Fig. S2 The local coordination geometry of Dy(III) center and the orientation of local magnetic moment in **1** (dark blue arrow), the black dashed line represents the C_2 symmetry axis, the H atoms and benzene moiety are omitted for clearity. The thick black ring is composed of four methoxyl oxygen atoms and one chlorine atoms which display the lowest electronic density. In contrast, the phenoxyl oxygen atoms O1, O2, O1' and O2' have the highest electronic density (see table S4).

Fig. S3 Temperature dependence of $\chi_M T$ and χ_M^{-1} measured at 1000 Oe for 1-4.

Fig. S4 The field dependence of magnetization at 2, 3, 5 and 8 K for 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right).

Fig. S5 Magnetization data for complex 1 at 2, 3, 5 and 8 K for 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right).

Fig. S6 The zero-field-cooled (ZFC) and field-cooled (FC) susceptibilities at 1500 Oe field for 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right). The divergence temperature of ZFC/FC is usually dependent on the external field during the measurement for a lanthanide SIM for the strong quantum tunneling of magnetization. In the plot of hysteresis, the open of the loop becomes larger and then decrease gradually with the increasing of external field, which could usually be found for lanthanide-based SIMs.

Fig. S7 Hysteresis loops at different temperatures recorded on a Quantum Design PPMS magnetometer with a sweep rate of 0.005 $T \cdot s^{-1}$ for 1.

Fig. S8 Hysteresis loops at different temperatures recorded on a Quantum Design PPMS magnetometer with a sweep rate of $0.020 \text{ T} \cdot \text{s}^{-1}$ for 1.

Fig. S9 The temperature dependence of the in-phase susceptibility (χ') plots of 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right), between 1 and 1000 Hz under zero dc field.

Fig. S10 The frequency dependence of the out-of-phase susceptibility (χ'') plots of 1 (top left), 2 (top right), 3 (bottom left), 4 (bottom right).

Fig. S11 The temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility under 1000 Oe dc field for **1**.

Fig. S12 The frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility under 1000 Oe dc fields for **1**.

Fig. S13 The opening hysteresis loops until 4 K recorded on the sample with 20 times magnetic site dilution for 1 by a Quantum Design MPMS XL-5 SQUID magnetometer.

Fig. S14 The temperature dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility under zero dc field for the sample with 20 times magnetic site dilution for **1**.

Fig. S15 The frequency dependence of the in-phase (χ') and out-of-phase (χ'') ac susceptibility under zero dc field for the sample with 20 times magnetic site dilution for **1**.