Asymmetric Addition of α-Branched Cyclic Ketones to Allenamides
Catalyzed by a Chiral Phosphoric Acid

Xiaoyu Yang and F. Dean Toste*
Department of Chemistry, University of California, Berkeley, California 94720, United States.

Table of Contents

General information S2
Synthesis of allenamides S3
Synthesis of products S5
Determination of the absolute stereochemistry of the products S15
Transformations of products S16
References S19
HPLC traces S20
NMR spectra S47
General Information:

Unless otherwise noted, all commercial reagents were used without further purification. 5Å MS were dried in oven at 200 ºC overnight and used when after cooling to rt. Dichloromethane, toluene, ether, THF and triethylamine were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Merck silica gel 60 F254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Merck Silica Gel 60 Å, 230 X 400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker AV-600, DRX-500, AV-500, AVQ-400, AVB-400 and AV-300 spectrometers. 1H and 13C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl$_3$; δH = 7.26 and δC = 77.16). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. Mass spectral data were obtained from the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. Enantiomeric excesses were determined on a Shimadzu VP Series Chiral HPLC using IA, IB, IC, OD, ASH, AD, OJ columns. The synthesis of phosphoric acids (S)-TRIP1, (R)-H$_8$TRIP2, (R)-C$_8$TRIP3, (S)-PA14 and (R)-TCYP5 has been previously described. Racemic products were synthesized by carrying out the reactions using (±)-TRIP as catalyst.
Synthesis of allenamides:

\[
\text{C} + \text{Br} \xrightarrow{K_2CO_3, \text{DMF, rt}} \text{S1} \xrightarrow{\text{RCOCl, Et}_3\text{N, DCM}} \text{S2} \xrightarrow{\text{KOtBu, THF, rt}} \text{2}
\]

Typical procedure for preparation of allenamides:

To a solution of aniline (9.1 mL, 100 mmol) in DMF (150 mL) was added 3-bromopropyne (11.2 mL, 80% in toluene, 100 mmol) and K₂CO₃ at rt. After stirring overnight, the mixture was quenched with H₂O and extracted with Et₂O for 3 times. The combined organic layer was then successively washed with H₂O and brine, dried over Na₂SO₄, filtered and concentrated \textit{in vacuo} to give a residue, which was purified by flash chromatography (20:1 – 15:1, Hexane/ Ethyl Ether) to afford the amine S1.

To the solution of S1 (1.0 equiv.) in DCM (0.5 M) was added DIPEA (1.5 equiv.) and RCOCl (1.1 equiv.) at 0 °C. After stirring for 6 h, the mixture was diluted with DCM, washed with 1 N HCl solution and extracted with DCM for 3 times. The combined organic layer was then washed with satd. NaHCO₃ solution and brine, dried over Na₂SO₄, filtered and concentrated \textit{in vacuo} to give a residue, which was purified by flash chromatography to afford the amide S2.

To the solution of S2 (1.0 equiv.) in THF (0.2 M) was added KOTBu (0.1 equiv.) at rt. After consumption of the starting material by TLC monitoring, the mixture was filtered through a pad of silica gel. After concentration of the filtrate, the residue was purified by flash chromatography to afford the corresponding allenamides.

\[\text{N-phenyl-N-(propa-1,2-dien-1-yl)acetamide}\]

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta 7.69 \text{ (t, } J = 6.5 \text{ Hz, } 1\text{H}), 7.49 - 7.32 \text{ (m, } 3\text{H}), 7.22 - 7.15 \text{ (m, } 2\text{H}), 5.01 \text{ (s, } 1\text{H}), 4.99 \text{ (s, } 1\text{H}), 1.90 \text{ (s, } 3\text{H}). \)^{13}\text{C NMR (100 MHz, CDCl}_3\) \(\delta 202.67, 168.57, 140.16, 129.16, 128.52, 100.99, 86.46, 23.05. \text{m/z HRMS (ESI) found [M]+ 173.0838, C}_{11}\text{H}_{11}\text{NO}^+ \text{ requires 173.0841.}\)
N-phenyl-N-(propa-1,2-dien-1-yl)benzamide

1H NMR (400 MHz, CDCl$_3$) δ 7.65 (t, $J = 6.6$ Hz, 1H), 7.34 (d, $J = 7.1$ Hz, 2H), 7.28 – 7.22 (m, 3H), 7.21 – 7.15 (m, 3H), 7.08 (d, $J = 7.6$ Hz, 2H), 5.09 (s, 1H), 5.07 (s, 1H). 13C NMR (100 MHz, CDCl$_3$) δ 202.80, 168.59, 140.39, 135.21, 130.11, 128.92, 128.89, 128.56, 127.88, 127.58, 102.07, 86.87. m/z HRMS (EI) found [M]$^+$ 235.0996, C$_{16}$H$_{13}$NO$^+$ requires 235.0997.

tert-butyl phenyl(propa-1,2-dien-1-yl)carbamate

1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 2H), 5.07 (s, 1H), 5.05 (s, 1H), 1.48 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 201.62, 152.47, 139.38, 128.62, 128.16, 127.21, 102.22, 86.51, 81.57, 28.30. m/z HRMS (EI) found [M]$^+$ 231.1258, C$_{14}$H$_{17}$NO$_2^+$ requires 231.1259.

N-benzyl-N-(propa-1,2-dien-1-yl)benzamide

1H NMR (400 MHz, CDCl$_3$) δ 8.16 – 6.31 (m, 11H), 5.41 – 5.10 (m, 2H), 5.04 – 4.59 (m, 2H). 13C NMR (100 MHz, CDCl$_3$) δ 200.52, 137.53, 130.45, 128.56, 128.07, 127.23, 102.54, 87.39, 47.70. m/z HRMS (EI) found [M]$^+$ 249.1155, C$_{17}$H$_{15}$NO$^+$ requires 249.1154.

N-phenyl-N-(propa-1,2-dien-1-yl)isobutyramide

N-phN
1H NMR (400 MHz, CDCl$_3$) δ 7.67 (t, $J = 6.6$ Hz, 1H), 7.47 – 7.32 (m, 3H), 7.17 (d, $J = 8.3$ Hz, 2H), 4.95 (s, 1H), 4.94 (s, 1H), 2.45 (hept, $J = 6.6$ Hz, 1H), 1.04 (d, $J = 6.7$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 203.00, 175.51, 139.79, 129.45, 128.67, 128.52, 101.32, 86.22, 31.84, 19.72. m/z HRMS (EI) found [M]$^+$ 201.1154, C$_{13}$H$_{15}$NO$^+$ requires 201.1154.

N-phenyl-N-(propa-1,2-dien-1-yl)pivalamide

![Chemical Structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.68 (t, $J = 6.4$ Hz, 1H), 7.43 – 7.29 (m, 3H), 7.18 (dd, $J = 8.0$, 1.7 Hz, 2H), 4.88 (s, 1H), 4.86 (s, 1H), 1.06 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 202.86, 175.99, 140.61, 130.29, 128.75, 128.49, 104.30, 86.98, 41.32, 29.41. m/z HRMS (EI) found [M]$^+$ 215.1312, C$_{14}$H$_{17}$NO$^+$ requires 215.1310.

Synthesis of the substrates:

Substrates 1a, 1q, 1t and 1u are commercial available. Other substrates were synthesized according literatures.$^{[6]}$

Synthesis of products:

General procedure:

To the substrate 1 (0.30 mmol) in a 1 dram (15 x 45 mm) vial equipped with an 8 mm magnetic stirrer bar was added toluene (0.3 ml). Subsequently, allenamide (0.3 mmol), 5Å MS (90 mg), and (S)-TRIP (23 mg, 0.03 mmol or 46 mg, 0.06 mmol) were added. After all the reagents were dissolved, the mixture was warmed to 40 °C. After 8h, another portion of allenamide (0.3 mmol) was added into the mixture. After heated at 40 °C for another 20h or 40h, the mixture was cooled to rt and directly purified by flash column chromatography to afford the desired product.

The relevant racemic products were synthesized in the same procedure expect (±)-TRIP (10 mol%) was used as catalyst.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylbenzamide
\(\text{[M+H]} \) 168.72, 140.43, 140.18, 135.65, 131.76, 129.90, 129.02, 128.82, 128.66, 127.84, 127.69, 126.86, 126.81, 111.89, 57.57, 41.22, 40.21, 35.22, 28.36, 21.59.

\([\text{M+H}]^+ \) 410.2106, \(C_{28}H_{28}O_2N^+ \) requires 410.2115. HPLC (Chiralpak AD column, 85:15 hexanes/isopropanol, 1 ml/min; tr = 15.5 min (minor), 13.5 min (major); 70% ee.

\((S, E)\)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylacetamide

\(\text{[M+Na]} \) 370.1778. HPLC (Chiralpak IB column, 97:3 hexanes/isopropanol, 1 ml/min; tr = 13.9 min (minor), 14.6 min (major); 82% ee.

\((S, E)\)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide

\(\text{[M+H]} \) 168.72, 140.43, 140.18, 135.65, 131.76, 129.90, 129.02, 128.82, 128.66, 127.84, 127.69, 126.86, 126.81, 111.89, 57.57, 41.22, 40.21, 35.22, 28.36, 21.59.

\([\text{M+Na}]^+ \) 370.1778. HPLC (Chiralpak IB column, 97:3 hexanes/isopropanol, 1 ml/min; tr = 13.9 min (minor), 14.6 min (major); 82% ee.
(dd, J = 14.1, 7.1 Hz, 1H), 2.35 – 2.17 (m, 4H), 1.88 (dd, J = 11.0, 5.4 Hz, 1H), 1.76 – 1.51 (m, 4H), 0.99 (d, J = 6.8 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 213.24, 175.18, 140.41, 139.64, 130.73, 129.81, 128.88, 128.70, 128.49, 126.76, 126.68, 110.60, 57.43, 41.09, 40.17, 35.06, 31.91, 28.33, 21.51, 19.62. m/z HRMS (ESI) found [M+H]$^+$ 376.2264, C$_{25}$H$_{30}$O$_2$N$^+$ requires 376.2271. HPLC (Chiralpak AD column, 90:10 hexanes/isopropanol, 1 ml/min; tr = 7.4 min (minor), 8.1 min (major); 90% ee.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3a)

![Chemical structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.28 (m, 3H), 7.24 – 7.11 (m, 4H), 7.04 (d, J = 6.6 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 3.83 (dt, J = 14.8, 7.8 Hz, 1H), 2.49 (dd, J = 14.2, 2.7 Hz, 1H), 2.39 (dd, J = 14.1, 7.1 Hz, 1H), 2.32 – 2.16 (m, 3H), 1.87 (ddd, J = 9.4, 6.1, 3.1 Hz, 1H), 1.71 – 1.45 (m, 4H), 1.01 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 213.21, 175.89, 140.38, 140.34, 133.53, 130.32, 129.09, 128.68, 128.28, 126.79, 126.63, 110.03, 77.48, 77.16, 76.84, 57.49, 41.10, 40.94, 40.17, 35.02, 29.18, 28.34, 21.53. m/z HRMS (ESI) found [M+H]$^+$ 390.2425, C$_{26}$H$_{31}$O$_2$N$^+$ requires 390.2428. HPLC (Chiralpak AD column, 92:8 hexanes/isopropanol, 1 ml/min; tr = 12.1 min (major), 13.5 min (minor); 94% ee.

(S,E)-N-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3b)

![Chemical structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.30 (m, 3H), 7.16 (d, J = 14.3 Hz, 1H), 7.10 – 7.01 (m, 4H), 6.80 (d, J = 8.0 Hz, 2H), 3.87 (dt, J = 14.0, 7.8 Hz, 1H), 2.46 (dd, J = 14.4, 2.8 Hz, 1H), 2.40 – 2.33 (m, 1H), 2.32 – 2.23 (m, 5H), 2.23 – 2.15 (m, 1H), 1.92 – 1.82 (m, 1H), 1.68 – 1.43 (m, 4H), 1.03 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 213.51, 175.99, 140.49, 137.46, 136.26, 133.50, 130.37, 129.44, 129.15, 128.27, 126.72, 110.28, 57.22, 41.19, 40.98, 40.16, 35.06, 29.21, 28.37, 21.59, 21.02. m/z HRMS (ESI) found [M+H]$^+$ 404.2575, C$_{27}$H$_{34}$O$_2$N$^+$ requires 404.2584. HPLC Chiralpak AD column, 96:4 hexanes/isopropanol, 1 ml/min; tr = 10.9 min (minor), 13.5 min (major); 94% ee.

(S,E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)

(S,E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)
1H NMR (400 MHz, CDCl$_3$) δ 7.84 – 7.71 (m, 3H), 7.54 – 7.43 (m, 2H), 7.38 (t, $J = 1.3$ Hz, 1H), 7.34 – 7.24 (m, 3H), 7.20 (d, $J = 14.1$ Hz, 1H), 7.06 (dd, $J = 8.6, 1.9$ Hz, 1H), 7.00 (d, $J = 6.5$ Hz, 2H). 3.86 (dt, $J = 14.0, 7.8$ Hz, 1H), 2.67 (dd, $J = 14.4, 2.8$ Hz, 1H), 2.55 (ddd, $J = 14.3, 7.2, 1.4$ Hz, 1H), 2.42 – 2.24 (m, 3H), 1.97 – 1.84 (m, 1H), 1.82 – 1.58 (m, 4H), 1.00 (s, 9H).

13C NMR (101 MHz, CDCl$_3$) δ 213.31, 175.91, 140.34, 137.86, 133.59, 133.42, 132.20, 130.24, 129.05, 128.54, 128.24, 127.93, 127.56, 126.20, 126.00, 125.83, 124.82, 109.92, 57.70, 40.92, 40.38, 35.28, 29.13, 28.40, 21.67. m/z HRMS (ESI) found [M+Na]$^+$ 462.2392, C$_{30}$H$_{33}$O$_2$Na requires 462.2404. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 15.3 min (major), 20.1 min (minor); 94% ee.

(S,E)-N-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3d)

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.36 (m, 2H), 7.34 (d, $J = 7.2$ Hz, 1H), 7.31 – 7.27 (m, 1H), 7.17 (d, $J = 14.1$ Hz, 1H), 7.13 – 7.01 (m, 4H), 6.82 (d, $J = 7.8$ Hz, 1H), 3.74 (dt, $J = 14.6, 7.9$ Hz, 1H), 2.52 – 2.33 (m, 2H), 2.30 – 2.14 (m, 3H), 1.98 – 1.83 (m, 1H), 1.74 – 1.43 (m, 4H), 1.01 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 212.40, 175.86, 142.78, 140.16, 133.93, 130.42, 130.31, 129.87, 129.24, 128.45, 128.24, 127.93, 127.56, 126.20, 126.00, 125.83, 124.82, 109.92, 57.70, 40.92, 40.38, 35.04, 29.13, 28.40, 21.46. m/z HRMS (ESI) found [M+H]$^+$ 468.1526, C$_{26}$H$_{31}$NO$_2$Br requires 468.1533. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 12.0 min (minor), 13.6 min (major); 94% ee.

(S,E)-N-(3-(2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)
1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, $J = 7.9$ Hz, 2H), 7.40 – 7.29 (m, 3H), 7.19 (d, $J = 14.2$ Hz, 1H), 7.07 – 6.97 (m, 4H), 3.69 (dt, $J = 15.0$, 7.8 Hz, 1H), 2.57 – 2.36 (m, 2H), 2.32 – 2.12 (m, 3H), 1.96 – 1.82 (m, 1H), 1.74 – 1.53 (m, 4H), 1.00 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 212.19, 175.94, 144.61, 140.28, 134.00, 130.32, 129.16, 128.42, 127.30, 125.61 (q, $J = 3.6$ Hz), 109.13, 57.61, 41.00, 40.82, 40.29, 35.03, 29.16, 28.19, 21.49. m/z HRMS (ESI) found [M+H]$^+$ requires 458.2301. HPLC (Chiralpak AD column, 92:8 hexanes/isopropanol, 1 ml/min; tr = 6.5 min (minor), 7.9 min (major); 94% ee.

(S,E)-$^\text{-}$tert-butyl 4-(2-oxo-1-(3-($^\text{N}$-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)

(S,E)-$^\text{-}$N-$^\text{N}$-(3-$(^\text{-}$benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)$^\text{-}$prop-1-en-1-yl)-$^\text{N}$-phenylpivalamide (3g)

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.29 (m, 3H), 7.18 (d, $J = 14.2$ Hz, 1H), 7.10 – 7.03 (m, 2H), 6.65 (d, $J = 8.2$ Hz, 1H), 6.41 (d, $J = 1.9$ Hz, 1H), 6.34 (dd, $J = 8.1$, 1.9 Hz, 1H), 5.91 (dd, $J = 7.6$, 1.6 Hz, 2H), 3.82 (dt, $J = 14.0$, 8.0 Hz, 1H), 2.41 – 2.34 (m, 2H), 2.29 (dt, $J = 13.0$, 6.4 Hz, 1H), 2.24 – 2.15 (m, 2H), 1.94 – 1.82 (m, 1H), 1.72 – 1.41 (m, 4H), 1.03 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 213.15, 175.92, 148.00, 146.17, 140.39, 134.20, 133.54, 130.37, 129.15, 128.32,
HRMS (ESI) found [M+Na]$^+$ 456.2142, C$_{27}$H$_{31}$O$_4$Na$^+$ requires 456.2145. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 12.2 min (minor), 15.3 min (major); 94% ee.

(S.E)-N-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3h)

![Chemical structure of 3h]

1H NMR (400 MHz, CDCl$_3$) δ 7.42 – 7.28 (m, 3H), 7.16 – 7.08 (m, 2H), 7.04 (dd, $J = 7.9$, 1.7 Hz, 2H), 6.68 (dd, $J = 8.2$, 2.5 Hz, 1H), 6.53 – 6.41 (m, 2H), 3.82 (dt, $J = 14.6$, 7.8 Hz, 1H), 3.73 (s, 3H), 2.50 – 2.34 (m, 2H), 2.33 – 2.14 (m, 3H), 1.87 (ddd, $J = 12.8$, 5.6, 2.6 Hz, 1H), 1.76 – 1.44 (m, 4H), 1.01 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 213.06, 175.86, 159.83, 141.95, 140.29, 133.44, 130.29, 129.65, 129.08, 128.23, 119.12, 113.20, 111.33, 109.86, 57.43, 55.18, 40.97, 40.92, 40.20, 35.07, 29.16, 28.22, 21.52. HRMS (ESI) found [M+Na]$^+$ 442.2355, C$_{27}$H$_{33}$O$_3$N$^+$ requires 442.2353. HPLC (Chiralpak IC column, 80:20 hexanes/isopropanol, 1 ml/min; tr = 14.1 min (major), 15.4 min (minor); 96% ee.

(S.E)-N-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3i)

![Chemical structure of 3i]

1H NMR (400 MHz, CDCl$_3$) δ 7.44 – 7.28 (m, 3H), 7.20 (d, $J = 14.2$ Hz, 1H), 7.10 – 6.98 (m, 5H), 6.99 – 6.92 (m, 1H), 3.77 – 3.66 (m, 1H), 2.71 – 2.61 (m, 1H), 2.51 (dd, $J = 14.3$, 6.7 Hz, 1H), 2.43 – 2.28 (m, 2H), 2.28 – 2.18 (m, 1H), 2.03 (s, 3H), 1.99 – 1.89 (m, 1H), 1.78 – 1.64 (m, 2H), 1.63 – 1.55 (m, 1H), 1.42 – 1.33 (m, 1H), 1.02 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 216.88, 175.94, 140.35, 138.16, 136.71, 133.40, 132.59, 130.43, 129.11, 128.31, 127.88, 126.78, 125.67, 109.96, 58.69, 41.02, 40.79, 39.09, 37.01, 30.73, 29.25, 21.53, 21.14. HRMS (ESI) found [M+Na]$^+$ 426.2400, C$_{27}$H$_{33}$O$_2$Na$^+$ requires 426.2404. HPLC (Chiralpak IC column, 85:15 hexanes/isopropanol, 1 ml/min; tr = 15.1 min (major), 17.1 min (minor); 87% ee.

(R,E)-N-(3-(2-oxo-1-(thiophen-2-yl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3j)
\[\text{S11} \]

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.41 - 7.29 \) (m, 3H), \(7.24 \) (d, \(J = 16.0 \) Hz, 1H), \(7.12 \) (d, \(J = 5.1 \) Hz, 1H), \(7.09 - 7.04 \) (m, 2H), \(6.85 \) (dd, \(J = 5.1, 3.5 \) Hz, 1H), \(6.52 \) (d, \(J = 3.6 \) Hz, 1H), \(3.94 \) (dt, \(J = 14.9, 7.7 \) Hz, 1H), \(2.62 - 2.16 \) (m, 5H), \(1.97 - 1.77 \) (m, 2H), \(1.77 - 1.65 \) (m, 2H), \(1.63 - 1.49 \) (m, 1H), \(1.03 \) (s, 9H). \(^{13}\text{C} \) NMR (101 MHz, CDCl\textsubscript{3}) \(\delta 210.85, 175.95, 145.85, 140.24, 133.80, 130.38, 129.12, 128.33, 126.89, 124.63, 124.26, 109.49, 55.26, 41.81, 40.98, 39.47, 37.55, 29.20, 27.34, 21.70. m/z HRMS (ESI) found [M+Na]+ 418.1801, C\textsubscript{24}H\textsubscript{29}O\textsubscript{2}NSNa+ requires 418.1811. HPLC (Chiralpak IC column, 85:15 hexanes/isopropanol, 1 ml/min; \(tr = 15.2 \) min (major), 16.7 min (minor); 96% ee.

\((S,E)-N-(3-(2-oxo-1-phenylcyclopentyl)prop-1-en-1-yl)-N-phenylpivalamide (3k)\)

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.40 - 7.28 \) (m, 4H), \(7.22 \) (d, \(J = 4.3 \) Hz, 4H), \(7.15 \) (dt, \(J = 8.5, 4.1 \) Hz, 1H), \(7.09 - 7.02 \) (m, 2H), \(3.90 \) (dt, \(J = 14.0, 7.7 \) Hz, 1H), \(2.49 - 2.28 \) (m, 3H), \(2.28 - 2.18 \) (m, 1H), \(2.11 \) (dt, \(J = 18.9, 8.3 \) Hz, 1H), \(1.96 \) (ddd, \(J = 13.3, 9.6, 6.6 \) Hz, 1H), \(1.88 - 1.78 \) (m, 1H), \(1.77 - 1.66 \) (m, 1H), \(1.03 \) (s, 9H). \(^{13}\text{C} \) NMR (101 MHz, CDCl\textsubscript{3}) \(\delta 219.22, 176.02, 140.22, 139.64, 133.97, 130.30, 129.15, 128.41, 128.39, 126.73, 126.69, 109.68, 57.01, 41.02, 39.90, 37.88, 33.42, 29.20, 18.55. m/z HRMS (ESI) found [M+Na]+ 398.2082, C\textsubscript{25}H\textsubscript{30}O\textsubscript{2}Na+ requires 398.2091. HPLC (Chiralpak AD column, 96:4 hexanes/isopropanol, 1 ml/min; \(tr = 14.3 \) min (major), 16.1 min (minor); 89% ee.

\((S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (3l)\)

1H NMR (400 MHz, CDCl\textsubscript{3}) \(\delta 7.39 - 7.29 \) (m, 3H), \(7.29 - 7.21 \) (m, 3H), \(7.21 - 7.15 \) (m, 1H), \(7.11 \) (d, \(J = 7.2 \) Hz, 2H), \(7.01 \) (d, \(J = 6.4 \) Hz, 2H), \(4.53 \) (dd, \(J = 12.6, 1.8 \) Hz, 1H), \(4.19 - 4.09 \) (m, 1H), \(3.80 - 3.61 \) (m, 2H), \(3.50 \) (d, \(J = 12.5 \) Hz, 1H), \(2.66 - 2.46 \) (m, 2H), \(2.39 - 2.27 \) (m, 1H), \(2.20 - 2.09 \) (m, 1H), \(1.02 \) (s,
9H). 13C NMR (101 MHz, CDCl3) δ 208.10, 176.04, 140.24, 138.81, 133.89, 130.34, 129.21, 128.84, 128.45, 127.15, 127.08, 108.60, 73.75, 69.19, 58.38, 41.08, 40.51, 36.08, 29.25. HRMS (ESI) found [M+Na]+ 414.2037, C25H29O3NNa+ requires 414.2040. HPLC (Chiralpak IC column, 80:20 hexanes/ isopropanol, 1 ml/min; tr = 10.4 min (major), 12.6 min (minor); 90% ee.

N-((E)-3-((S)-2-oxo-1-((E)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3m)

![Structure of 3m]

1H NMR (400 MHz, CDCl3) δ 7.44 – 7.15 (m, 9H), 7.10 (d, J = 7.1 Hz, 2H), 6.16 – 5.97 (m, 2H), 4.13 (dt, J = 14.8, 7.5 Hz, 1H), 2.61 – 2.12 (m, 4H), 1.97 – 1.84 (m, 2H), 1.78 – 1.67 (m, 2H), 1.66 – 1.54 (m, 2H), 1.03 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 212.35, 175.99, 140.40, 136.92, 133.90, 133.03, 131.01, 130.34, 129.18, 128.55, 128.38, 127.61, 126.19, 109.95, 54.86, 41.05, 39.69, 38.78, 36.41, 29.24, 27.23, 21.67. m/z HRMS (ESI) found [M+H]+ 416.2574, C28H34O2N+ requires 416.2584. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 8.3 min (minor), 9.0 min (major); 94% ee.

N-((E)-3-((S)-2-oxo-1-((Z)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3n)

![Structure of 3n]

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.33 (m, 4H), 7.22 – 7.12 (m, 5H), 7.01 – 6.93 (m, 2H), 6.54 (d, J = 12.5 Hz, 1H), 5.41 (d, J = 12.6 Hz, 1H), 4.26 (dt, J = 14.1, 7.8 Hz, 1H), 2.58 – 2.42 (m, 1H), 2.34 – 2.17 (m, 2H), 1.94 – 1.78 (m, 3H), 1.75 – 1.65 (m, 1H), 1.63 – 1.55 (m, 1H), 1.53 – 1.43 (m, 1H), 1.41 – 1.31 (m, 1H), 1.06 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 213.60, 176.05, 140.35, 136.39, 135.46, 133.74, 131.90, 130.51, 129.27, 128.71, 128.48, 127.94, 127.43, 109.76, 55.44, 41.82, 41.14, 40.39, 38.34, 29.32, 29.05, 21.97. HRMS (ESI) found [M+Na]+ 438.2405, C28H33O2NNa+ requires 438.2404. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 12.4 min (major), 16.9 min (minor); 91% ee.

(S,E)-N-((2-oxo-1-vinylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3o)
(S,E)-N-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3p)

(S,E)-N-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-N-phenylpivalamide (3q)
40.36, 36.91, 35.03, 29.34, 28.19, 25.62, 25.27, 23.03, 22.29, 21.73. HRMS (ESI) found [M+H]$^+$ 394.2739, C$_{26}$H$_{36}$O$_2$N$^+$ requires 394.2741. HPLC (Chiralpak AD column, 96:4 hexanes/isopropanol, 1 ml/min; tr = 10.5 min (minor), 11.5 min (major); 91% ee.

(S,E)-N-(3-(2-oxo-1-(phenylethynyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3r)

\[
\begin{align*}
\text{O} & \quad \text{Ph} \\
\text{=C} & \quad \text{NPhPiv}
\end{align*}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, $J = 14.4$ Hz, 1H), 7.45 – 7.35 (m, 3H), 7.34 – 7.24 (m, 5H), 7.23 – 7.17 (m, 2H), 4.43 (dt, $J = 14.5$, 7.7Hz, 1H), 2.99 (td, $J = 13.4$, 5.8 Hz, 1H), 2.66 (ddd, $J = 14.0$, 6.6, 1.4 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.26 – 2.17 (m, 1H), 2.15 – 2.02 (m, 3H), 1.82 – 1.71 (m, 1H), 1.70 – 1.58 (m, 1H), 1.50 (td, $J = 13.2$, 3.6 Hz, 1H), 1.11 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 208.29, 176.04, 140.39, 134.04, 131.61, 130.51, 129.22, 128.33, 128.23, 128.18, 123.04, 109.62, 89.94, 86.42, 50.78, 41.11, 39.65, 39.23, 36.74, 29.29, 28.09, 22.41. m/z HRMS (ESI) found [M+H]$^+$ 414.2416, C$_{28}$H$_{32}$O$_2$N$^+$ requires 414.2428. HPLC (Chiralpak AD column, 92:8 hexanes/isopropanol, 1 ml/min; tr = 6.7 min (minor), 8.2 min (major); 93% ee.

(S,E)-N-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3s)

\[
\begin{align*}
\text{O} & \quad \text{nBu} \\
\text{=C} & \quad \text{NPhPiv}
\end{align*}
\]

1H NMR (400 MHz, CDCl$_3$) δ 7.51 – 7.30 (m, 4H), 7.16 (d, $J = 7.5$ Hz, 2H), 4.30 (dt, $J = 14.7$, 7.6 Hz, 1H), 2.86 (td, $J = 13.3$, 5.7 Hz, 1H), 2.45 (dd, $J = 14.0$, 6.5 Hz, 1H), 2.17 (d, $J = 13.2$ Hz, 1H), 2.12 – 2.02 (m, 3H), 2.01 – 1.83 (m, 3H), 1.70 – 1.60 (m, 1H), 1.58 – 1.45 (m, 1H), 1.39 – 1.21 (m, 5H), 1.06 (s, 9H), 0.86 (t, $J = 7.0$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 209.20, 176.00, 140.47, 133.71, 130.50, 129.16, 128.32, 110.03, 86.46, 80.48, 49.94, 41.10, 39.47, 38.90, 37.04, 30.96, 29.31, 28.01, 22.26, 21.96, 18.44, 13.69. m/z HRMS (ESI) found [M+H]$^+$ 394.2733, C$_{26}$H$_{36}$O$_2$N$^+$ requires 394.2741. HPLC (Chiralpak AD column, 96:4 hexanes/isopropanol, 1 ml/min; tr = 7.0 min (minor), 7.6 min (major); 91% ee.

(S,E)-N-(3-(1-methyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3t)
1H NMR (400 MHz, CDCl$_3$) δ 7.47 – 7.34 (m, 4H), 7.19 – 7.11 (m, 2H), 4.09 (dt, $J = 14.7$, 7.8 Hz, 1H), 2.35 – 2.21 (m, 3H), 2.11 (dd, $J = 13.9$, 7.5 Hz, 1H), 1.84 – 1.55 (m, 5H), 1.49 – 1.37 (m, 1H), 1.04 (s, 9H), 0.88 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 215.41, 176.10, 140.23, 133.87, 130.50, 129.31, 128.59, 109.05, 48.98, 41.21, 38.94, 38.62, 38.33, 29.35, 27.45, 22.69, 21.14. HRMS (ESI) found [M+Na]$^+$ 350.2088, C$_{21}$H$_{29}$O$_2$NNa$^+$ requires 350.2091. HPLC (Chiralpak AD column, 94:4 hexanes/isopropanol, 0.5 ml/min; τ_r = 18.2 min (minor), 18.7 min (major); 70% ee.

(S,E)-N-(3-(1-butyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3u)

1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.33 (m, 4H), 7.17 – 7.12 (m, 2H), 4.07 (dt, $J = 14.2$, 7.8 Hz, 1H), 2.36 – 2.18 (m, 3H), 2.10 (ddd, $J = 14.3$, 7.3, 1.4 Hz, 1H), 1.89 – 1.78 (m, 1H), 1.66 – 1.44 (m, 5H), 1.27 – 1.12 (m, 4H), 1.06 (s, 9H), 0.94 – 0.83 (m, 2H), 0.80 (t, $J = 7.2$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 215.16, 176.08, 140.40, 133.67, 130.47, 129.29, 128.51, 109.74, 51.93, 41.16, 39.38, 36.64, 35.43, 34.48, 29.34, 27.26, 25.53, 23.34, 20.93, 14.00. HRMS (ESI) found [M+Na]$^+$ 392.2556, C$_{24}$H$_{35}$O$_2$NNa$^+$ requires 392.2560. HPLC (Chiralpak IA column, 96:4 hexanes/isopropanol, 1 ml/min; τ_r = 9.0 min (minor), 9.8 min (major); 78% ee.

Determination of the absolute stereochemistry of the products:

(S)-2-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)acetaldehyde (7g)

To a solution of 3g (65 mg, 0.15 mmol) in THF / H$_2$O (2 mL / 2 mL) was added OsO$_4$ (48 uL, 4% in water, 0.0075 mmol) and NaIO$_4$ (112 mg, 0.525 mmol) at rt. After stirring overnight, the
mixture was quenched with satd. Na$_2$SO$_3$ solution and then extracted with Et$_2$O for 2 times. The combined organic layer was then washed with brine, dried over Na$_2$SO$_4$, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (8:1 Hexane / EA) to afford the titled product 7g (22.0 mg, 56% yield). 1H NMR (400 MHz, CDCl$_3$) δ 9.57 (t, J = 2.5 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 2.0 Hz, 1H), 6.63 (dd, J = 8.1, 1.9 Hz, 1H), 6.00 – 5.94 (m, 2H), 2.70 – 2.58 (m, 3H), 2.51 – 2.41 (m, 1H), 2.40 – 2.33 (m, 1H), 2.03 – 1.89 (m, 2H), 1.80 – 1.67 (m, 3H). [α]$_D^{20}$ = +214.5 (c 0.65, CHCl$_3$). The absolute configuration of the stereocenter was determined to be (S) by comparison of the optical rotation of 7g with literature.$^{[7]}$ HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 18.4 min (major), 21.1 min (minor); 94% ee.

Transformations of the product:

(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)

![Chemical Structure](image)

To a solution of 3a (105 mg, 0.27 mmol) in Et$_2$O (5 mL) was added 2 N HCl solution (5 mL) at rt. After 3 min, the mixture was quenched with satd. NaHCO$_3$ solution and extracted with Et$_2$O for 3 times. The combined organic layer was then washed with brine, dried over Na$_2$SO$_4$, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (15:1 Hexane / EA) to afford the titled product 4a (57 mg, 92% yield). 1H NMR (400 MHz, CDCl$_3$) δ 9.51 (s, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.3 Hz, 1H), 7.12 (d, J = 7.7 Hz, 2H), 2.66 (dd, J = 11.3, 3.4 Hz, 1H), 2.38 (td, J = 13.4, 6.3 Hz, 1H), 2.31 – 2.08 (m, 4H), 1.98 – 1.88 (m, 1H), 1.87 – 1.78 (m, 1H), 1.77 – 1.57 (m, 4H). 13C NMR (101 MHz, CDCl$_3$) δ 213.34, 202.27, 139.97, 129.17, 127.21, 127.04, 56.79, 40.22, 39.28, 35.97, 32.55, 28.44, 21.64. HRMS (EI) found [M]$^+$ 230.1306, C$_{13}$H$_{18}$O$_2^+$ requires 230.1307. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 13.4 min (major), 16.8 min (minor); 94% ee.

($1R,5S$)-5-phenylbicyclo[3.3.1]nonane-2,9-dione (5a)
4a (18 mg, 0.078 mmol) was dissolved in 2 N HCl solution (3 mL) at rt. After stirring overnight, the solvent was removed in vacuo to give a residue, which was redissolved in DCM (2 mL) and followed by addition of DMP (66 mg, 0.15 mmol) at rt. After stirring overnight, the mixture was quenched with satd. NaHCO₃ solution and extracted with DCM for 3 times. The combined organic layer was then washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography (10:1 Hexane / EA) to afford the titled product 5a (13.0 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 8.3, 6.8 Hz, 2H), 7.33 – 7.27 (m, 3H), 3.34 (dd, J = 4.6, 3.0 Hz, 1H), 2.85 (ddd, J = 16.7, 7.1, 5.2 Hz, 1H), 2.65 (dt, J = 16.7, 9.1 Hz, 1H), 2.56 – 2.26 (m, 5H), 2.20 – 2.08 (m, 1H), 1.94 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 210.23, 210.05, 143.50, 128.33, 127.25, 127.17, 64.09, 53.60, 41.42, 40.90, 35.27, 32.12, 20.00. HRMS (EI) found [M]+ 228.1155, C₁₃H₁₆O₂⁺ requires 228.1150.

(4a,8aS)-4a-phenyloctahydro-2H-chromen-2-one (6a)

To a solution of SmI₂ (652 µL, 0.1 N in THF, 0.65 mmol) was added iPrSH (4.8 µL, 0.052 mmol) under Ar at rt. Then a solution of 4a (30 mg, 0.13 mmol) in THF (1 mL) was slowly added into the above mixture. After stirring for 1 h, the mixture was quenched by filtering through a pad of silica gel. Concentration of the filtrate in vacuo gave a residue, which was purified by flash chromatography (5:1 Hexane/EA) to afford the titled product 6a (21.6 mg, 72% yield) with the minor isomer (3.7 mg, 12% yield). Data for the major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 7.7 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 4.38 (dd, J = 12.7, 4.3 Hz, 1H), 2.64 – 2.39 (m, 2H), 2.32 – 2.16 (m, 1H), 2.16 – 1.87 (m, 4H), 1.86 – 1.73 (m, 1H), 1.51 – 1.32 (m, 3H), 1.10 – 0.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 140.33, 128.88, 128.34, 126.64,
86.95, 42.30, 38.88, 37.65, 28.31, 27.78, 25.24, 21.52. HRMS (EI) found [M]+ 230.1309, C_{13}H_{18}O_{2}^+ requires 230.1307.

(S)-2-(2-oxo-1-phenylcyclohexyl)acetaldehyde (7a)

To a solution of 3a (82 mg, 0.21 mmol) in DCM (10 mL) was bubbled with O_3 until the solution turned blue at -78 °C. To the above blue solution was added Me_2S (3 mL) and the mixture was slowly warmed to rt. After stirring overnight, the mixture was concentrated in vacuo to give a residue, which was purified by flash chromatography (DCM) to afford the titled product 7a (37.2 mg, 82% yield). ^1^H NMR (400 MHz, CDCl_3) δ 9.57 (t, J = 2.5 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 7.33 – 7.25 (m, 1H), 7.21 (d, J = 7.7 Hz, 2H), 2.76 (dd, J = 14.4, 3.3 Hz, 1H), 2.72 – 2.62 (m, 2H), 2.48 – 2.36 (m, 2H), 2.06 – 1.91 (m, 2H), 1.83 – 1.68 (m, 3H). ^1^C NMR (101 MHz, CDCl_3) δ 212.11, 201.66, 139.73, 129.51, 127.59, 126.68, 56.37, 53.48, 39.80, 35.91, 28.02, 21.46. HRMS (EI) found [M]+ 216.1146, C_{14}H_{16}O_{2}^+ requires 216.1150. HPLC (Chiralpak IC column, 90:10 hexanes/isopropanol, 1 ml/min; tr = 15.1 min (minor), 19.5 min (major); 94% ee.

(3aS,7aS)-3a-phenyloctahydro-1H-indole (8a)

To a solution of 7a (34 mg, 0.157 mmol) in EtOH (3 mL) was added NH_4OAc (24 mg, 0.315 mmol), NaBH_3CN (40 mg, 0.628 mmol) and HOAc (9 uL, 0.157 mmol) at rt. After stirring for 20 h, the mixture was quenched with 2 N NaOH solution and extracted with DCM for 5 times. The combined organic layer was dried over Na_2SO_4, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography (50: 1: 1 DCM/MeOH/Et_3N) to afford the titled product 8a (17.8 mg, 56% yield). ^1^H NMR (400 MHz, CDCl_3) δ 7.41 – 7.29 (m, 4H), 7.24 – 7.17 (m, 1H), 4.41 (brs, 1H), 3.67 (t, J = 4.1 Hz, 1H, 3.31 (dt, J = 11.5, 8.2 Hz, 1H), 3.13 (td, J = 10.6, 4.4 Hz, 1H), 2.10 (ddd, J = 13.1, 8.7, 4.4 Hz, 1H), 2.03 – 1.64 (m, 6H), 1.55 – 1.45 (m, 2H), 1.29 – 1.17 (m,
1H). 13C NMR (101 MHz, CDCl$_3$) δ 145.80, 128.51, 126.65, 126.12, 61.00, 47.99, 42.84, 41.00, 33.35, 25.79, 22.03, 20.89. HRMS (ESI) found [M+H]$^+$ 202.1588, C$_{14}$H$_{20}$N$^+$ requires 202.1590.

References:

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylbenzamide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylacetamide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3a)
(S,E)-N-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3b)

![Chemical Structure](image)

![Graph 1](image)

![Graph 2](image)
(S,E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)
(S,E)-N-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3d)
(S,E)-N-(3-(2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)
(S,E)-tert-butyl 4-(2-oxo-1-(3-(N-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)
(S,E)-N-(3-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3g)
(S,E)-N-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3h)
(S,E)-N-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3i)
(R,E)-N-(3-(2-oxo-1-(thiophen-2-yl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3j)

![Chemical structure](image)

![Retention time graph](image)
(S,E)-N-(3-(2-oxo-1-phenylcyclopentyl)prop-1-en-1-yl)-N-phenylpivalamide (3k)
(S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (3l)
N-((E)-3-((S)-2-oxo-1-((E)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3m)
N-((E)-3-((S)-2-oxo-1-((Z)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3n)
(S,E)-\(N-\left(3\text{-}(2\text{-oxo}-1\text{-vinylcyclohexyl})\text{prop-1-en-1-yl}\right)\)-\(N\)-phenylpivalamide (3o)
(S,E)-N-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3p)
(S,E)-N-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-N-phenylpivalamide (3q)
(S,E)-N-(3-(2-oxo-1-(phenylethynyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3r)
(S,E)-N-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3s)
(S,E)-N-(3-(1-methyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3t)
(S,E)-N-(3-(1-butyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3u)
(S)-2-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)acetaldehyde (7g)
(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)

\[
\text{CH}_3\quad\text{CHO}
\]

Retention Time
Area Percent

SDP-M20A-210 nm
(S)-2-(2-oxo-1-phenylcyclohexyl)acetaldehyde (7a)
N-phenyl-N-(propa-1,2-dien-1-yl)acetamide
N-phenyl-N-(propa-1,2-dien-1-yl)benzamide
tert-butyl phenyl(propa-1,2-dien-1-yl)carbamate
N-benzyl-N-(propa-1,2-dien-1-yl)benzamide
N-phenyl-N-(propa-1,2-dien-1-yl)isobutyramide
N-phenyl-N-(propa-1,2-dien-1-yl)pivalamide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylbenzamide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylacetamide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide
(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3a)
(S,E)-N-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3b)
(S,E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)
(S,E)-N-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3d)
(S,E)-N-(3-(2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)
(S,E)-tert-butyl 4-(2-oxo-1-(3-(N-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)
(S,E)-N-(3-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3g)
(S,E)-N-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3h)
(S,E)-N-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3i)
\((R,E)-N-(3-(2-oxo-1-(thiophen-2-yl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3j)\)
(S,E)-N-(3-(2-oxo-1-phenylcyclopentyl)prop-1-en-1-yl)-N-phenylpivalamide (3k)
(S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (3I)
$N-((E)-3-((S)-2-oxo-1-((E)-styryl)cyclohexyl)prop-1-en-1-yl)-N$-phenylpivalamide (3m)
N-((E)-3-((S)-2-oxo-1-((Z)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3n)
(S,E)-N-(3-(2-oxo-1-vinylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3o)
(S,E)-N-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3p)
(S,E)-N-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-N-phenylpivalamide (3q)
(S,E)-N-(3-(2-oxo-1-(phenylethynyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3r)
(S,E)-N-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3s)
(S,E)-N-(3-(1-methyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3t)
(S,E)-N-(3-(1-butyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3u)
(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)
(1R,5S)-5-phenylbicyclo[3.3.1]nonane-2,9-dione (5a)
(4aS,8aS)-4a-phenyloctahydro-2H-chromen-2-one (6a)
(3aS,7aS)-3-phenyloctahydro-1H-indole (8a)