Asymmetric Addition of α-Branched Cyclic Ketones to Allenamides Catalyzed by a Chiral Phosphoric Acid

Xiaoyu Yang and F. Dean Toste*

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Table of Contents

General information	S2
Synthesis of allenamides	S3
Synthesis of products	S5
Determination of the absolute stereochemistry of the products	S15
Transformations of products	S16
References	S19
HPLC traces	S20
NMR spectra	S47

General Information:

Unless otherwise noted, all commercial reagents were used without further purification. 5Å MS were dried in oven at 200 °C overnight and used when after cooling to rt. Dichloromethane, toluene, ether, THF and triethylamine were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Merck silica gel 60 F254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Merck Silica Gel 60 Å, 230 X 400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker AV-600, DRX-500, AV-500, AVQ-400, AVB-400 and AV-300 spectrometers. ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl₃; $\delta H = 7.26$ and $\delta C = 77.16$). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance. Mass spectral data were obtained from the Micro-Mass/Analytical Facility operated by the College of Chemistry, University of California, Berkeley. Enantiomeric excesses were determined on a Shimadzu VP Series Chiral HPLC using IA, IB, IC, OD, ASH, AD, OJ columns. The synthesis of phosphoric acids (S)-TRIP^[1], (R)-H₈ TRIP,^[2] (R)-C₈ TRIP^[3], (S)-PA1^[4] and (R)-TCYP^[5] has been previously described. Racemic products were synthesized by carrying out the reactions using (±)-TRIP as catalyst.

Synthesis of allenamides:

Typical procedure for preparation of allenamides:

To a solution of aniline (9.1 mL, 100 mmol) in DMF (150 mL) was added 3-bromopropyne (11.2 mL, 80% in toluene, 100 mmol) and K_2CO_3 at rt. After stirring overnight, the mixture was quenched with H_2O and extracted with Et_2O for 3 times. The combined organic layer was then successively washed with H_2O and brine, dried over Na_2SO_4 , filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (20:1 – 15:1, Hexane/ Ethyl Ether) to afford the amine **S1**.

To the solution of **S1** (1.0 equiv.) in DCM (0.5 M) was added DIPEA (1.5 equiv.) and RCOCl (1.1 equiv.) at 0 °C. After stirring for 6 h, the mixture was diluted with DCM, washed with 1 N HCl solution and extracted with DCM for 3 times. The combined organic layer was then washed with satd. NaHCO₃ solution and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography to afford the amide **S2**.

To the solution of **S2** (1.0 equiv.) in THF (0.2 M) was added KOtBu (0.1 equiv.) at rt. After consumption of the starting material by TLC monitoring, the mixture was filtered through a pad of silica gel. After concentration of the filtrate, the residue was purified by flash chromatography to afford the corresponding allenamides.

N-phenyl-N-(propa-1,2-dien-1-yl)acetamide

NPhAc

¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, *J* = 6.5 Hz, 1H), 7.49 – 7.32 (m, 3H), 7.22 – 7.15 (m, 2H), 5.01 (s, 1H), 4.99 (s, 1H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 202.67, 168.57, 140.16, 129.16, 128.52, 100.99, 86.46, 23.05. m/z HRMS (EI) found [M]⁺ 173.0838, C₁₁H₁₁NO⁺ requires 173.0841.

N-phenyl-N-(propa-1,2-dien-1-yl)benzamide

NPhBz

¹H NMR (400 MHz, CDCl₃) δ 7.65 (t, J = 6.6 Hz, 1H), 7.34 (d, J = 7.1 Hz, 2H), 7.28 – 7.22 (m, 3H), 7.21 – 7.15 (m, 3H), 7.08 (d, J = 7.6 Hz, 2H), 5.09 (s, 1H), 5.07 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 202.80, 168.59, 140.39, 135.21, 130.11, 128.92, 128.89, 128.56, 127.88, 127.58, 102.07, 86.87. m/z HRMS (EI) found [M]⁺ 235.0996, C₁₆H₁₃NO⁺ requires 235.0997.

tert-butyl phenyl(propa-1,2-dien-1-yl)carbamate

NPhBoc

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.35 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 2H), 5.07 (s, 1H), 5.05 (s, 1H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.62, 152.47, 139.38, 128.62, 128.16, 127.21, 102.22, 86.51, 81.57, 28.30. m/z HRMS (EI) found [M]⁺ 231.1258, C₁₄H₁₇NO₂⁺ requires 231.1259.

N-benzyl-N-(propa-1,2-dien-1-yl)benzamide

NBnBz

¹H NMR (400 MHz, CDCl₃) δ 8.16 – 6.31 (m, 11H), 5.41 – 5.10 (m, 2H), 5.04 – 4.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 200.52, 137.53, 130.45, 128.56, 128.07, 127.23, 102.54, 87.39, 47.70. m/z HRMS (EI) found $[M]^+$ 249.1155, $C_{17}H_{15}NO^+$ requires 249.1154.

N-phenyl-N-(propa-1,2-dien-1-yl)isobutyramide

¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, *J* = 6.6 Hz, 1H), 7.47 – 7.32 (m, 3H), 7.17 (d, *J* = 8.3 Hz, 2H), 4.95 (s, 1H), 4.94 (s, 1H), 2.45 (hept, *J* = 6.8 Hz, 1H), 1.04 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 203.00, 175.51, 139.79, 129.45, 128.67, 128.52, 101.32, 86.22, 31.84, 19.72. m/z HRMS (EI) found [M]⁺ 201.1154, C₁₃H₁₅NO⁺ requires 201.1154.

N-phenyl-N-(propa-1,2-dien-1-yl)pivalamide

¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, J = 6.4 Hz, 1H), 7.43 – 7.29 (m, 3H), 7.18 (dd, J = 8.0, 1.7 Hz, 2H), 4.88 (s, 1H), 4.86 (s, 1H), 1.06 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 202.86, 175.99, 140.61, 130.29, 128.75, 128.49, 104.30, 86.98, 41.32, 29.41. m/z HRMS (EI) found [M]⁺ 215.1312, C₁₄H₁₇NO⁺ requires 215.1310.

Synthesis of the substrates:

Substrates 1a, 1q, 1t and 1u are commercial available. Other substrates were synthesized according literatures.^[6]

Synthesis of products:

General procedure:

To the substrate **1** (0.30 mmol) in a 1 dram (15 x 45 mm) vial equipped with an 8 mm magnetic stirrer bar was added toluene (0.3 ml). Subsequently, allenamide (0.3 mmol), 5Å MS (90 mg), and **(S)-TRIP** (23 mg, 0.03 mmol or 46 mg, 0.06 mmol) were added. After all the reagents were dissolved, the mixture was warmed to 40 °C. After 8h, another portion of allenamide (0.3 mmol) was added into the mixture. After heated at 40 °C for another 20h or 40h, the mixture was cooled to rt and directly purified by flash column chromatography to afford the desired product.

The relevant racemic products were synthesized in the same procedure expect (\pm) -TRIP (10 mol%) was used as catalyst.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylbenzamide

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.15 (m, 12H), 7.03 (dd, J = 10.3, 7.5 Hz, 4H), 4.41 (dt, J = 14.8, 7.8 Hz, 1H), 2.63 (dd, J = 14.0, 2.8 Hz, 1H), 2.52 (dd, J = 14.1, 7.4 Hz, 1H), 2.45 – 2.24 (m, 3H), 2.02 – 1.88 (m, 1H), 1.82 – 1.58 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 213.11, 168.72, 140.43, 140.18, 135.65, 131.76, 129.90, 129.29, 129.02, 128.82, 128.66, 127.84, 127.69, 126.86, 126.81, 111.89, 57.57, 41.22, 40.21, 35.22, 28.36, 21.59. m/z HRMS (ESI) found [M+H]⁺ 410.2106, C₂₈H₂₈O₂N⁺ requires 410.2115. HPLC (Chiralpak AD column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 15.5 min (minor), 13.5 min (major); 70% ee.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylacetamide

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.31 (m, 3H), 7.26 – 7.19 (m, 3H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.02 (d, *J* = 7.1 Hz, 2H), 6.94 (d, *J* = 7.4 Hz, 2H), 3.99 (dt, *J* = 14.3, 7.0 Hz, 1H), 2.52 (dd, *J* = 14.2, 2.9 Hz, 1H), 2.41 (dd, *J* = 14.0, 7.2 Hz, 1H), 2.36 – 2.17 (m, 3H), 1.93 – 1.84 (m, 1H), 1.77 (s, 3H), 1.70 – 1.51 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 213.14, 168.31, 140.41, 140.06, 130.27, 129.88, 128.77, 128.72, 128.56, 126.79, 126.73, 110.21, 57.50, 41.05, 40.20, 35.12, 28.34, 23.25, 21.55. m/z HRMS (ESI) found [M+Na]⁺ 370.1769, C₂₃H₂₅O₂NNa⁺ requires 370.1778. HPLC (Chiralpak IB column, 97:3 hexanes/ isopropanol, 1 ml/min; tr = 13.9 min (minor), 14.6 min (major); 82% ee.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.32 (m, 3H), 7.31 – 7.18 (m, 3H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.04 (d, *J* = 7.5 Hz, 2H), 6.93 (d, *J* = 7.6 Hz, 2H), 3.93 (dt, *J* = 14.7, 7.5 Hz, 1H), 2.53 (d, *J* = 13.2 Hz, 1H), 2.41

(dd, J = 14.1, 7.1 Hz, 1H), 2.35 – 2.17 (m, 4H), 1.88 (dd, J = 11.0, 5.4 Hz, 1H), 1.76 – 1.51 (m, 4H), 0.99 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 213.24, 175.18, 140.41, 139.64, 130.73, 129.81, 128.88, 128.70, 128.49, 126.76, 126.68, 110.60, 57.43, 41.09, 40.17, 35.06, 31.91, 28.33, 21.51, 19.62. m/z HRMS (ESI) found [M+H]⁺ 376.2264, C₂₅H₃₀O₂N⁺ requires 376.2271. HPLC (Chiralpak AD column, 90:10 hexanes/ isopropanol, 1 ml/min; tr = 7.4 min (minor), 8.1 min (major); 90% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3a**)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 3H), 7.24 – 7.11 (m, 4H), 7.04 (d, *J* = 6.6 Hz, 2H), 6.90 (d, *J* = 8.4 Hz, 2H), 3.83 (dt, *J* = 14.8, 7.8 Hz, 1H), 2.49 (dd, *J* = 14.2, 2.7 Hz, 1H), 2.39 (dd, *J* = 14.1, 7.1 Hz, 1H), 2.32 – 2.16 (m, 3H), 1.87 (ddd, *J* = 9.4, 6.1, 3.1 Hz, 1H), 1.71 – 1.45 (m, 4H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.21, 175.89, 140.38, 140.34, 133.53, 130.32, 129.09, 128.68, 128.28, 126.79, 126.63, 110.03, 77.48, 77.16, 76.84, 57.49, 41.10, 40.94, 40.17, 35.02, 29.18, 28.34, 21.53. m/z HRMS (ESI) found [M+H]⁺ 390.2425, C₂₆H₃₁O₂N⁺ requires 390.2428.HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 12.1 min (major), 13.5 min (minor); 94% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3b**)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.30 (m, 3H), 7.16 (d, J = 14.3 Hz, 1H), 7.10 – 7.01 (m, 4H), 6.80 (d, J = 8.0 Hz, 2H), 3.87 (dt, J = 14.0, 7.8 Hz, 1H), 2.46 (dd, J = 14.4, 2.8 Hz, 1H), 2.40 – 2.33 (m, 1H), 2.32 – 2.23 (m, 5H), 2.23 – 2.15 (m, 1H), 1.92 – 1.82 (m, 1H), 1.68 – 1.43 (m, 4H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.51, 175.99, 140.49, 137.46, 136.26, 133.50, 130.37, 129.44, 129.15, 128.27, 126.72, 110.28, 57.22, 41.19, 40.98, 40.16, 35.06, 29.21, 28.37, 21.59, 21.02. m/z HRMS (ESI) found [M+H]⁺ 404.2575, C₂₇H₃₄O₂N⁺ requires 404.2584. HPLC Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 10.9 min (minor), 13.5 min (major); 94% ee.

(*S*,*E*)-*N*-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3c**)

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.71 (m, 3H), 7.54 – 7.43 (m, 2H), 7.38 (t, *J* = 1.3 Hz, 1H), 7.34 – 7.24 (m, 3H), 7.20 (d, *J* = 14.1 Hz, 1H), 7.06 (dd, *J* = 8.6, 1.9 Hz, 1H), 7.00 (d, *J* = 6.5 Hz, 2H). 3.86 (dt, *J* = 14.0, 7.8 Hz, 1H), 2.67 (dd, *J* = 14.4, 2.8 Hz, 1H), 2.55 (ddd, *J* = 14.3, 7.2, 1.4 Hz, 1H), 2.42 – 2.24 (m, 3H), 1.97 – 1.84 (m, 1H), 1.82 – 1.58 (m, 4H), 1.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.31, 175.91, 140.34, 137.86, 133.59, 133.42, 132.20, 130.24, 129.05, 128.54, 128.24, 127.93, 127.56, 126.20, 126.00, 125.83, 124.82, 109.92, 57.70, 40.92, 40.38, 35.28, 29.13, 28.40, 21.67. m/z HRMS (ESI) found [M+Na]⁺ 462.2392, C₃₀H₃₃O₂NNa⁺ requires 462.2404. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 15.3 min (major), 20.1 min (minor); 94% ee.

(*S*,*E*)-*N*-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3d**)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.17 (d, *J* = 14.1 Hz, 1H), 7.13 – 7.01 (m, 4H), 6.82 (d, *J* = 7.8 Hz, 1H), 3.74 (dt, *J* = 14.6, 7.9 Hz, 1H), 2.52 – 2.33 (m, 2H), 2.30 – 2.14 (m, 3H), 1.98 – 1.83 (m, 1H), 1.74 – 1.43 (m, 4H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.40, 175.86, 142.78, 140.16, 133.93, 130.42, 130.31, 129.87, 129.24, 128.45, 125.65, 122.83, 108.84, 57.46, 41.00, 40.87, 40.22, 35.04, 29.20, 28.26, 21.46. m/z HRMS (ESI) found [M+H]⁺ 468.1526, C₂₆H₃₁NO₂Br⁺ requires 468.1533. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 12.0 min (minor), 13.6 min (major); 94% ee.

(S,E)-N-(3-(2-oxo-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.9 Hz, 2H), 7.40 – 7.29 (m, 3H), 7.19 (d, J = 14.2 Hz, 1H), 7.07 – 6.97 (m, 4H), 3.69 (dt, J = 15.0, 7.8 Hz, 1H), 2.57 – 2.36 (m, 2H), 2.32 – 2.12 (m, 3H), 1.96 – 1.82 (m, 1H), 1.74 – 1.53 (m, 4H), 1.00 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.19, 175.94, 144.61, 140.28, 134.00, 130.32, 129.16, 128.42, 127.30, 125.61 (q, J = 3.6 Hz), 109.13, 57.61, 41.00, 40.82, 40.29, 35.03, 29.16, 28.19, 21.49. m/z HRMS (ESI) found [M+H]⁺ 458.2291, C₂₇H₃₁O₂NF₃⁺ requires 458.2301. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 6.5 min (minor), 7.9 min (major); 94% ee.

(S,E)-tert-butyl 4-(2-oxo-1-(3-(N-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.42 – 7.30 (m, 3H), 7.18 (d, J = 14.2 Hz, 1H), 7.04 (d, J = 6.7 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 3.78 (dt, J = 14.2, 7.9 Hz, 1H), 2.51 (dd, J = 11.9, 2.9 Hz, 1H), 2.42 (ddd, J = 14.3, 7.2, 1.4 Hz, 1H), 2.34 – 2.16 (m, 3H), 1.94 – 1.85 (m, 1H), 1.73 – 1.50 (m, 14H), 1.02 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.52, 175.96, 165.48, 145.23, 140.33, 133.87, 130.50, 130.35, 129.83, 129.18, 128.39, 126.76, 109.47, 81.12, 57.80, 41.01, 40.92, 40.33, 35.10, 29.20, 28.30, 21.56. m/z HRMS (ESI) found [M+H]⁺ 490.2941, C₃₁H₄₀O₄N⁺ requires 490.2952. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 12.1 min (major), 13.5 min (minor); 94% ee.

(S,E)-N-(3-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3g)

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 3H), 7.18 (d, J = 14.2 Hz, 1H), 7.10 – 7.03 (m, 2H), 6.65 (d, J = 8.2 Hz, 1H), 6.41 (d, J = 1.9 Hz, 1H), 6.34 (dd, J = 8.1, 1.9 Hz, 1H), 5.91 (dd, J = 7.6, 1.6 Hz, 2H), 3.82 (dt, J = 14.0, 8.0 Hz, 1H), 2.41 – 2.34 (m, 2H), 2.29 (dt, J = 13.0, 6.4 Hz, 1H), 2.24 – 2.15 (m, 2H), 1.94 – 1.82 (m, 1H), 1.72 – 1.41 (m, 4H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.15, 175.92, 148.00, 146.17, 140.39, 134.20, 133.54, 130.37, 129.15, 128.32,

120.08, 110.06, 108.41, 107.38, 101.08, 57.11, 41.12, 40.98, 40.03, 35.34, 29.21, 28.26, 21.49. HRMS (ESI) found $[M+Na]^+$ 456.2142, $C_{27}H_{31}O_4NNa^+$ requires 456.2145. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 12.2 min (minor), 15.3 min (major); 94% ee.

(*S*,*E*)-*N*-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3h**)

¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 3H), 7.16 – 7.08 (m, 2H), 7.04 (dd, *J* = 7.9, 1.7 Hz, 2H), 6.68 (dd, *J* = 8.2, 2.5 Hz, 1H), 6.53 – 6.41 (m, 2H), 3.82 (dt, *J* = 14.6, 7.8 Hz, 1H), 3.73 (s, 3H), 2.50 – 2.34 (m, 2H), 2.33 – 2.14 (m, 3H), 1.87 (ddd, *J* = 12.8, 5.6, 2.6 Hz, 1H), 1.76 – 1.44 (m, 4H), 1.01 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.06, 175.86, 159.83, 141.95, 140.29, 133.44, 130.29, 129.65, 129.08, 128.23, 119.12, 113.20, 111.33, 109.86, 57.43, 55.18, 40.97, 40.92, 40.20, 35.07, 29.16, 28.22, 21.52. HRMS (ESI) found [M+Na]⁺ 442.2355, C₂₇H₃₃O₃N⁺ requires 442.2353. HPLC (Chiralpak IC column, 80:20 hexanes/ isopropanol, 1 ml/min; tr = 14.1 min (major), 15.4 min (minor); 96% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3i**)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.28 (m, 3H), 7.20 (d, J = 14.2 Hz, 1H), 7.10 – 6.98 (m, 5H), 6.99 – 6.92 (m, 1H), 3.77 – 3.66 (m, 1H), 2.71 – 2.61 (m, 1H), 2.51 (dd, J = 14.3, 6.7 Hz, 1H), 2.43 – 2.28 (m, 2H), 2.28 – 2.18 (m, 1H), 2.03 (s, 3H), 1.99 – 1.89 (m, 1H), 1.78 – 1.64 (m, 2H), 1.63 – 1.55 (m, 1H), 1.42 – 1.33 (m, 1H), 1.02 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 216.88, 175.94, 140.35, 138.16, 136.71, 133.40, 132.59, 130.43, 129.11, 128.31, 127.88, 126.78, 125.67, 109.96, 58.69, 41.02, 40.79, 39.09, 37.01, 30.73, 29.25, 21.53, 21.14. HRMS (ESI) found [M+Na]⁺ 426.2400, C₂₇H₃₃O₂NNa⁺ requires 426.2404. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 15.1 min (major), 17.1 min (minor); 87% ee.

(*R*,*E*)-*N*-(3-(2-oxo-1-(thiophen-2-yl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**j)

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 3H), 7.24 (d, *J* = 16.0 Hz, 1H), 7.12 (d, *J* = 5.1 Hz, 1H), 7.09 – 7.04 (m, 2H), 6.85 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.52 (d, *J* = 3.6 Hz, 1H), 3.94 (dt, *J* = 14.9, 7.7 Hz, 1H), 2.62 – 2.16 (m, 5H), 1.97 – 1.77 (m, 2H), 1.77 – 1.65 (m, 2H), 1.63 – 1.49 (m, 1H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 210.85, 175.95, 145.85, 140.24, 133.80, 130.38, 129.12, 128.33, 126.89, 124.63, 124.26, 109.49, 55.26, 41.81, 40.98, 39.47, 37.55, 29.20, 27.34, 21.70. m/z HRMS (ESI) found [M+Na]⁺ 418.1801, C₂₄H₂₉O₂NSNa⁺ requires 418.1811. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 15.2 min (major), 16.7 min (minor); 96% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-phenylcyclopentyl)prop-1-en-1-yl)-N-phenylpivalamide (**3k**)

¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 4H), 7.22 (d, *J* = 4.3 Hz, 4H), 7.15 (dt, *J* = 8.5, 4.1 Hz, 1H), 7.09 – 7.02 (m, 2H), 3.90 (dt, *J* = 14.0, 7.7 Hz, 1H), 2.49 – 2.28 (m, 3H), 2.28 – 2.18 (m, 1H), 2.11 (dt, *J* = 18.9, 8.3 Hz, 1H), 1.96 (ddd, *J* = 13.3, 9.6, 6.6 Hz, 1H), 1.88 – 1.78 (m, 1H), 1.77 – 1.66 (m, 1H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 219.22, 176.02, 140.22, 139.64, 133.97, 130.30, 129.15, 128.41, 128.39, 126.73, 126.69, 109.68, 57.01, 41.02, 39.90, 37.88, 33.42, 29.20, 18.55. m/z HRMS (ESI) found [M+Na]⁺ 398.2082, C₂₅H₂₉O₂NNa⁺ requires 398.2091. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 14.3 min (major), 16.1 min (minor); 89% ee.

(S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (31)

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 3H), 7.29 – 7.21 (m, 3H), 7.21 – 7.15 (m, 1H), 7.11 (d, J = 7.2 Hz, 2H), 7.01 (d, J = 6.4 Hz, 2H), 4.53 (dd, J = 12.6, 1.8 Hz, 1H), 4.19 – 4.09 (m, 1H), 3.80 – 3.61 (m, 2H), 3.50 (d, J = 12.5 Hz, 1H), 2.66 – 2.46 (m, 2H), 2.39 – 2.27 (m, 1H), 2.20 – 2.09 (m, 1H), 1.02 (s,

9H). ¹³C NMR (101 MHz, CDCl₃) δ 208.10, 176.04, 140.24, 138.81, 133.89, 130.34, 129.21, 128.84, 128.45, 127.15, 127.08, 108.60, 73.75, 69.19, 58.38, 41.08, 40.51, 36.08, 29.25. HRMS (ESI) found [M+Na]⁺ 414.2037, C₂₅H₂₉O₃NNa⁺ requires 414.2040. HPLC (Chiralpak IC column, 80:20 hexanes/ isopropanol, 1 ml/min; tr = 10.4 min (major), 12.6 min (minor); 90% ee.

N-((E)-3-((S)-2-oxo-1-((E)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (**3m**)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.15 (m, 9H), 7.10 (d, *J* = 7.1 Hz, 2H), 6.16 – 5.97 (m, 2H), 4.13 (dt, *J* = 14.8, 7.5 Hz, 1H), 2.61 – 2.12 (m, 4H), 1.97 – 1.84 (m, 2H), 1.78 – 1.67 (m, 2H), 1.66 – 1.54 (m, 2H), 1.03 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.35, 175.99, 140.40, 136.92, 133.90, 133.03, 131.01, 130.34, 129.18, 128.55, 128.38, 127.61, 126.19, 109.95, 54.86, 41.05, 39.69, 38.78, 36.41, 29.24, 27.23, 21.67. m/z HRMS (ESI) found [M+H]⁺ 416.2574, C₂₈H₃₄O₂N⁺ requires 416.2584. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 8.3 min (minor), 9.0 min (major); 94% ee.

N-((E)-3-((S)-2-oxo-1-((Z)-styryl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (**3n**)

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.33 (m, 4H), 7.22 – 7.12 (m, 5H), 7.01 – 6.93 (m, 2H), 6.54 (d, J = 12.5 Hz, 1H), 5.41 (d, J = 12.6 Hz, 1H), 4.26 (dt, J = 14.1, 7.8 Hz, 1H), 2.58 – 2.42 (m, 1H), 2.34 – 2.17 (m, 2H), 1.94 – 1.78 (m, 3H), 1.75 – 1.65 (m, 1H), 1.63 – 1.55 (m, 1H), 1.53 – 1.43 (m, 1H), 1.41 – 1.31 (m, 1H), 1.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 213.60, 176.05, 140.35, 136.39, 135.46, 133.74, 131.90, 130.51, 129.27, 128.71, 128.48, 127.94, 127.43, 109.76, 55.44, 41.82, 41.14, 40.39, 38.34, 29.32, 29.05, 21.97. HRMS (ESI) found [M+Na]⁺ 438.2405, C₂₈H₃₃O₂NNa⁺ requires 438.2404. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 12.4 min (major), 16.9 min (minor); 91% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-vinylcyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**30**)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.32 (m, 4H), 7.16 – 7.10 (m, 2H), 5.68 (dd, J = 17.8, 10.8 Hz, 1H), 5.08 (d, J = 10.8 Hz, 1H), 4.81 (d, J = 17.8 Hz, 1H), 4.09 (dt, J = 15.0, 7.8 Hz, 1H), 2.50 – 2.36 (m, 1H), 2.32 – 2.14 (m, 3H), 1.93 – 1.75 (m, 2H), 1.73 – 1.48 (m, 4H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 212.66, 176.08, 141.23, 140.38, 133.91, 130.45, 129.25, 128.50, 116.02, 109.66, 55.37, 41.16, 39.60, 38.31, 35.79, 29.33, 27.25, 21.50. HRMS (ESI) found [M+H]⁺ 340.2271, C₂₂H₃₀O₂N⁺ requires 340.2271. HPLC (Chiralpak OJ column, 95:5 hexanes/ isopropanol, 1 ml/min; tr = 13.3 min (major), 14.5 min (minor); 91% ee.

(*S*,*E*)-*N*-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**p)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 4H), 7.13 (d, *J* = 6.9 Hz, 2H), 4.94 (s, 1H), 4.18 (dt, *J* = 14.9, 7.9 Hz, 1H), 2.56 (td, *J* = 13.0, 6.0 Hz, 1H), 2.40 (dd, *J* = 14.0, 7.4 Hz, 1H), 2.18 – 2.06 (m, 2H), 2.03 – 1.92 (m, 1H), 1.81 (d, *J* = 13.9 Hz, 1H), 1.70 (t, *J* = 13.2 Hz, 1H), 1.68 – 1.48 (m, 6H), 1.32 (s, 3H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 215.46, 176.04, 140.65, 135.55, 133.30, 130.46, 129.18, 128.47, 128.32, 110.93, 54.31, 41.67, 41.09, 40.04, 37.37, 29.32, 29.19, 27.11, 21.90, 18.45. m/z HRMS (ESI) found [M+H]⁺ 368.2577, C₂₄H₃₄O₂N⁺ requires 368.2584. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 12.3 min (major), 13.4 min (minor); 88% ee.

(*S*,*E*)-*N*-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3q**)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.34 (m, 3H), 7.30 (d, *J* = 14.3 Hz, 1H), 7.15 – 7.09 (m, 2H), 5.22 (t, *J* = 3.8 Hz, 1H), 4.01 (dt, *J* = 14.8, 7.8 Hz, 1H), 2.47 – 2.34 (m, 2H), 2.20 – 2.06 (m, 2H), 2.05 – 1.80 (m, 4H), 1.81 – 1.71 (m, 1H), 1.71 – 1.61 (m, 1H), 1.60 – 1.29 (m, 8H), 1.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 214.51, 175.88, 140.57, 135.45, 132.75, 130.56, 129.11, 128.36, 124.78, 111.07, 58.46, 41.10,

40.36, 36.91, 35.03, 29.34, 28.19, 25.62, 25.27, 23.03, 22.29, 21.73. HRMS (ESI) found $[M+H]^+$ 394.2739, $C_{26}H_{36}O_2N^+$ requires 394.2741. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 10.5 min (minor), 11.5 min (major); 91% ee.

(*S*,*E*)-*N*-(3-(2-oxo-1-(phenylethynyl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3r**)

¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 14.4 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.34 – 7.24 (m, 5H), 7.23 – 7.17 (m, 2H), 4.43 (dt, J = 14.5, 7.7Hz, 1H), 2.99 (td, J = 13.4, 5.8 Hz, 1H), 2.66 (ddd, J = 14.0, 6.6, 1.4 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.26 – 2.17 (m, 1H), 2.15 – 2.02 (m, 3H), 1.82 – 1.71 (m, 1H), 1.70 – 1.58 (m, 1H), 1.50 (td, J = 13.2, 3.6 Hz, 1H), 1.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 208.29, 176.04, 140.39, 134.04, 131.61, 130.51, 129.22, 128.33, 128.23, 128.18, 123.04, 109.62, 89.94, 86.42, 50.78, 41.11, 39.65, 39.23, 36.74, 29.29, 28.09, 22.41. m/z HRMS (ESI) found [M+H]⁺ 414.2416, C₂₈H₃₂O₂N⁺ requires 414.2428. HPLC (Chiralpak AD column, 92:8 hexanes/ isopropanol, 1 ml/min; tr = 6.7 min (minor), 8.2 min (major); 93% ee.

(*S*,*E*)-*N*-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3s**)

¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.30 (m, 4H), 7.16 (d, J = 7.5 Hz, 2H), 4.30 (dt, J = 14.7, 7.6 Hz, 1H), 2.86 (td, J = 13.3, 5.7 Hz, 1H), 2.45 (dd, J = 14.0, 6.5 Hz, 1H), 2.17 (d, J = 13.2 Hz, 1H), 2.12 – 2.02 (m, 3H), 2.01 – 1.83 (m, 3H), 1.70 – 1.60 (m, 1H), 1.58 – 1.45 (m, 1H), 1.39 – 1.21 (m, 5H), 1.06 (s, 9H), 0.86 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.20, 176.00, 140.47, 133.71, 130.50, 129.16, 128.32, 110.03, 86.46, 80.48, 49.94, 41.10, 39.47, 38.90, 37.04, 30.96, 29.31, 28.01, 22.26, 21.96, 18.44, 13.69. m/z HRMS (ESI) found [M+H]⁺ 394.2733, C₂₆H₃₆O₂N⁺ requires 394.2741. HPLC (Chiralpak AD column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 7.0 min (minor), 7.6 min (major); 91% ee.

(*S*,*E*)-*N*-(3-(1-methyl-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**t)

¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.34 (m, 4H), 7.19 – 7.11 (m, 2H), 4.09 (dt, J = 14.7, 7.8 Hz, 1H), 2.35 – 2.21 (m, 3H), 2.11 (dd, J = 13.9, 7.5 Hz, 1H), 1.84 – 1.55 (m, 5H), 1.49 – 1.37 (m, 1H), 1.04 (s, 9H), 0.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.41, 176.10, 140.23, 133.87, 130.50, 129.31, 128.59, 109.05, 48.98, 41.21, 38.94, 38.62, 38.33, 29.35, 27.45, 22.69, 21.14. HRMS (ESI) found [M+Na]⁺ 350.2088, C₂₁H₂₉O₂NNa⁺ requires 350.2091. HPLC (Chiralpak AD column, 94:4 hexanes/ isopropanol, 0.5 ml/min; tr = 18.2 min (minor), 18.7 min (major); 70% ee.

(*S*,*E*)-*N*-(3-(1-butyl-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3u**)

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.33 (m, 4H), 7.17 – 7.12 (m, 2H), 4.07 (dt, *J* = 14.2, 7.8 Hz, 1H), 2.36 – 2.18 (m, 3H), 2.10 (ddd, *J* = 14.3, 7.3, 1.4 Hz, 1H), 1.89 – 1.78 (m, 1H), 1.66 – 1.44 (m, 5H), 1.27 – 1.12 (m, 4H), 1.06 (s, 9H), 0.94 – 0.83 (m, 2H), 0.80 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 215.16, 176.08, 140.40, 133.67, 130.47, 129.29, 128.51, 109.74, 51.93, 41.16, 39.38, 36.64, 35.43, 34.48, 29.34, 27.26, 25.53, 23.34, 20.93, 14.00. HRMS (ESI) found [M+Na]⁺ 392.2556, C₂₄H₃₅O₂NNa⁺ requires 392.2560. HPLC (Chiralpak IA column, 96:4 hexanes/ isopropanol, 1 ml/min; tr = 9.0 min (minor), 9.8 min (major); 78% ee.

Determination of the absolute stereochemistry of the products:

(S)-2-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)acetaldehyde (7g)

To a solution of 3g (65 mg, 0.15 mmol) in THF / H₂O (2 mL / 2 mL) was added OsO₄ (48 uL, 4% in water, 0.0075 mmol) and NaIO₄ (112 mg, 0.525 mmol) at rt. After stirring overnight, the

mixture was quenched with satd. Na₂SO₃ solution and then extracted with Et₂O for 2 times. The combined organic layer was then washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (8:1 Hexane / EA) to afford the titled product **7g** (22.0 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (t, *J* = 2.5 Hz, 1H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.71 (d, *J* = 2.0 Hz, 1H), 6.63 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.00 – 5.94 (m, 2H), 2.70 – 2.58 (m, 3H), 2.51 – 2.41 (m, 1H), 2.40 – 2.33 (m, 1H), 2.03 – 1.89 (m, 2H), 1.80 – 1.67 (m, 3H). [α]_D²⁰ = +214.5 (c 0.65, CHCl₃). The absolute configuration of the stereocenter was determined to be (*S*) by comparison of the optical rotation of **7g** with literature.^[7] HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 18.4 min (major), 21.1 min (minor); 94% ee.

Transformations of the product:

(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)

To a solution of **3a** (105 mg, 0.27 mmol) in Et₂O (5 mL) was added 2 N HCl solution (5 mL) at rt. After 3 min, the mixture was quenched with satd. NaHCO₃ solution and extracted with Et₂O for 3 times. The combined organic layer was then washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (15:1 Hexane / EA) to afford the titled product **4a** (57 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 2H), 2.66 (dd, *J* = 11.3, 3.4 Hz, 1H), 2.38 (td, *J* = 13.4, 6.3 Hz, 1H), 2.31 – 2.08 (m, 4H), 1.98 – 1.88 (m, 1H), 1.87 – 1.78 (m, 1H), 1.77 – 1.57 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 213.34, 202.27, 139.97, 129.17, 127.21, 127.04, 56.79, 40.22, 39.28, 35.97, 32.55, 28.44, 21.64. HRMS (EI) found [M]⁺ 230.1306, C₁₅H₁₈O₂⁺ requires 230.1307. HPLC (Chiralpak IC column, 85:15 hexanes/ isopropanol, 1 ml/min; tr = 13.4 min (major), 16.8 min (minor); 94% ee.

(1R, 5S)-5-phenylbicyclo[3.3.1]nonane-2,9-dione (5a)

4a (18 mg, 0.078 mmol) was dissolved in 2 N HCl solution (3 mL) at rt. After stirring overnight, the solvent was removed *in vacuo* to give a residue, which was redissovled in DCM (2 mL) and followed by addition of DMP (66 mg, 0.15 mml) at rt. After stirring overnight, the mixture was quenched with satd. NaHCO₃ solution and extracted with DCM for 3 times. The combined organic layer was then washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (10:1 Hexane / EA) to afford the titled product **5a** (13.0 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, *J* = 8.3, 6.8 Hz, 2H), 7.33 – 7.27 (m, 3H), 3.34 (dd, *J* = 4.6, 3.0 Hz, 1H), 2.85 (ddd, *J* = 16.7, 7.1, 5.2 Hz, 1H), 2.65 (dt, *J* = 16.7, 9.1 Hz, 1H), 2.56 – 2.26 (m, 5H), 2.20 – 2.08 (m, 1H), 1.94 – 1.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 210.23, 210.05, 143.50, 128.33, 127.25, 127.17, 64.09, 53.60, 41.42, 40.90, 35.27, 32.12, 20.00. HRMS (EI) found [M]⁺ 228.1155, C₁₅H₁₆O₂⁺ requires 228.1150.

(4aS,8aS)-4a-phenyloctahydro-2H-chromen-2-one (6a)

To a solution of SmI₂ (652 uL, 0.1 N in THF, 0.65 mmol) was added iPrSH (4.8 uL, 0.052 mmol) under Ar at rt. Then a solution of **4a** (30 mg, 0.13 mmol) in THF (1 mL) was slowly added into the above mixture. After stirring for 1 h, the mixture was quenched by filtering through a pad of silica gel. Concentration of the filtrate *in vacuo* gave a residue, which was purified by flash chromatography (5:1 Hexane/ EA) to afford the titled product **6a** (21.6 mg, 72% yield) with the minor isomer (3.7 mg, 12 % yield). Data for the major diastereoisomer: ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 4.38 (dd, *J* = 12.7, 4.3 Hz, 1H), 2.64 – 2.39 (m, 2H), 2.32 – 2.16 (m, 1H), 2.16 – 1.87 (m, 4H), 1.86 – 1.73 (m, 1H), 1.51 – 1.32 (m, 3H), 1.10 – 0.98 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 171.28, 140.33, 128.88, 128.34, 126.64,

86.95, 42.30, 38.88, 37.65, 28.31, 27.78, 25.24, 21.52. HRMS (EI) found $[M]^+230.1309$, $C_{15}H_{18}O_2^+$ requires 230.1307.

(S)-2-(2-oxo-1-phenylcyclohexyl)acetaldehyde (7a)

To a solution of **3a** (82 mg, 0.21 mmol) in DCM (10 mL) was bubbled with O₃ until the solution turned blue at -78 °C. To the above blue solution was added Me₂S (3 mL) and the mixture was slowly warmed to rt. After stirring overnight, the mixture was concentrated *in vacuo* to give a residue, which was purified by flash chromatography (DCM) to afford the titled product **7a** (37.2 mg, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.57 (t, *J* = 2.5 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.25 (m, 1H), 7.21 (d, *J* = 7.7 Hz, 2H), 2.76 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.72 – 2.62 (m, 2H), 2.48 – 2.36 (m, 2H), 2.06 – 1.91 (m, 2H), 1.83 – 1.68 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 212.11, 201.66, 139.73, 129.51, 127.59, 126.68, 56.37, 53.48, 39.80, 35.91, 28.02, 21.46. HRMS (EI) found [M]⁺ 216.1146, C₁₄H₁₆O₂⁺ requires 216.1150. HPLC (Chiralpak IC column, 90:10 hexanes/ isopropanol, 1 ml/min; tr = 15.1 min (minor), 19.5 min (major); 94% ee.

(3aS,7aS)-3a-phenyloctahydro-1H-indole (8a)

To a solution of **7a** (34 mg, 0.157 mmol) in EtOH (3 mL) was added NH₄OAc (24 mg, 0.315 mmol), NaBH₃CN (40 mg, 0.628 mmol) and HOAc (9 uL, 0.157 mmol) at rt. After stirring for 20 h, the mixture was quenched with 2 N NaOH solution and extracted with DCM for 5 times. The combined organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo* to give a residue, which was purified by flash chromatography (50: 1: 1 DCM/ MeOH/ Et₃N) to afford the titled product **8a** (17.8 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 4H), 7.24 – 7.17 (m, 1H), 4.41 (brs, 1H), 3.67 (t, *J* = 4.1 Hz, 1H, 3.31 (dt, *J* = 11.5, 8.2 Hz, 1H), 3.13 (td, *J* = 10.6, 4.4 Hz, 1H), 2.10 (ddd, *J* = 13.1, 8.7, 4.4 Hz, 1H), 2.03 – 1.64 (m, 6H), 1.55 – 1.45 (m, 2H), 1.29 – 1.17 (m,

1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.80, 128.51, 126.65, 126.12, 61.00, 47.99, 42.84, 41.00, 33.35, 25.79, 22.03, 20.89. HRMS (ESI) found [M+H]⁺ 202.1588, C₁₄H₂₀N⁺ requires 202.1590.

References:

- [1] J. Seayad, A. M. Seayad, B. List, J. Am. Chem. Soc. 2006, 128, 1086-1087.
- [2] W. Xie, G. Jiang, H. Liu, J. Hu, X. Pan, H. Zhang, X. Wan, Y. Lai, D. Ma, Angew. Chem. Int. Ed. 2013, 52, 12924-12927.
- [3] V. Rauniyar, A. D. Lackner, G. L. Hamilton, F. D. Toste, Science 2011, 334, 1681-1684.
- [4] W. Kashikura, J. Itoh, K. Mori, T. Akiyama, Chem. Asian J. 2010, 5, 470-472.
- [5] V. Rauniyar, Z. J. Wang, H. E. Burks, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 8486-8489.
- [6] a) X. Yang, R. J. Phipps, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5225-5228; b) X. Yang,
 F. D. Toste, J. Am. Chem. Soc. 2015, 137, 3205-3208.
- [7] T. Kano, Y. Hayashi, K. Maruoka, J. Am. Chem. Soc. 2013, 135, 7134-7137.

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3a)

S23

(*S*,*E*)-*N*-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3b**)

Minutes

(S, E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)

S25

(*S*,*E*)-*N*-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3d**)

S26

(S, E)-N-(3-(2-0x0-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)

(S,E)-tert-butyl 4-(2-oxo-1-(3-(N-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)

(S,E)-N-(3-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (**3g**)

S29

(*S*,*E*)-*N*-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3h**)

(S,E)-N-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3i)

S31

(R,E)-N- $(3-(2-\infty o-1-(thiophen-2-yl)cyclohexyl)$ prop-1-en-1-yl)-N-phenylpivalamide (3j)

(S, E)-N- $(3-(2-\infty o-1-phenylcyclopentyl)$ prop-1-en-1-yl)-N-phenylpivalamide (3k)

(S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (31)

N-((*E*)-3-((*S*)-2-oxo-1-((*E*)-styryl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3m**)

S35

N-((*E*)-3-((*S*)-2-oxo-1-((*Z*)-styryl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3n**)

S36
(S,E) - N - (3 - (2 - 0xo - 1 - vinylcyclohexyl) prop - 1 - en - 1 - yl) - N - phenylpivalamide (30)

(*S*,*E*)-*N*-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**p)

(S,E)-N-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-N-phenylpivalamide (3q)

(*S*,*E*)-*N*-(3-(2-oxo-1-(phenylethynyl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3r**)

(*S*,*E*)-*N*-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3s**)

(S,E)-N-(3-(1-methyl-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3t)

(S)-2-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)acetaldehyde (7g)

(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)

(S)-2-(2-oxo-1-phenylcyclohexyl)acetaldehyde (7a)

N-phenyl-N-(propa-1,2-dien-1-yl)acetamide

tert-butyl phenyl(propa-1,2-dien-1-yl)carbamate

N-benzyl-N-(propa-1,2-dien-1-yl)benzamide

N-phenyl-N-(propa-1,2-dien-1-yl)isobutyramide

N-phenyl-N-(propa-1,2-dien-1-yl)pivalamide

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylbenzamide

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylacetamide

(S,E)-N-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-N-phenylisobutyramide

(*S*,*E*)-*N*-(3-(2-oxo-1-phenylcyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3a**)

(S,E)-N-(3-(2-oxo-1-(p-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3b)

(S, E)-N-(3-(1-(naphthalen-2-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3c)

(S,E)-N-(3-(1-(3-bromophenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3d)

(S, E)-N-(3-(2-0x0-1-(4-(trifluoromethyl)phenyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3e)

yxy6_167_L_1AH.1.fid AVB-400 ZBO Proton starting parameters. 6/11/03 RN -900 800 -750 -700 sf 7] 15 r -650 600 -550 CF₃ 500 450 NPhPiv 400 -350 -300 -250 -200 -150 -100 -50 H -0 1.00-1 2004 3.054 1.05-1 1.0 2.5 1.05-4.15-3.03---50 8.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 3.0 2.0 1.5 0.5 0.0 7.5 7.0 yno6_167_L_1AC.1.ftd AVB-400 ZBO Carbon Starting paramters 6/11/03 RN 은 전 단 단 단 단 단 단 단 단 단 단 -4000 77.48 CDCI3 28.16 28.16 28.16 28.16 28.19 28.19 -57.61 -3500 -3000 -2500 CF₃ 2000 NPhPiv -1500 -1000 500 500 200 ó 210 180 160 150 140 130 120 100 80 70 40 30 20 10 190 170 110 f1 (ppm) 90 60 50

(S,E)-tert-butyl 4-(2-oxo-1-(3-(N-phenylpivalamido)allyl)cyclohexyl)benzoate (3f)

(S,E)-N-(3-(1-(benzo[d][1,3]dioxol-5-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3g)

(*S*,*E*)-*N*-(3-(1-(3-methoxyphenyl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3h**)

(S,E)-N-(3-(2-oxo-1-(o-tolyl)cyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (3i)

(*R*,*E*)-*N*-(3-(2-oxo-1-(thiophen-2-yl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**j)

(*S*,*E*)-*N*-(3-(2-oxo-1-phenylcyclopentyl)prop-1-en-1-yl)-N-phenylpivalamide (**3k**)

(S,E)-N-(3-(4-oxo-3-phenyltetrahydro-2H-pyran-3-yl)prop-1-en-1-yl)-N-phenylpivalamide (31)

N-((*E*)-3-((*S*)-2-oxo-1-((*E*)-styryl)cyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3m**)

(S,E)-N-(3-(2-oxo-1-vinylcyclohexyl)prop-1-en-1-yl)-N-phenylpivalamide (30)

(*S*,*E*)-*N*-(3-(1-(2-methylprop-1-en-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3**p)

(S,E)-N-(3-(2-oxo-[1,1'-bi(cyclohexan)]-1'-en-1-yl)prop-1-en-1-yl)-N-phenylpivalamide (3q)

(*S*,*E*)-*N*-(3-(1-(hex-1-yn-1-yl)-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3s**)

(*S*,*E*)-*N*-(3-(1-butyl-2-oxocyclohexyl)prop-1-en-1-yl)-*N*-phenylpivalamide (**3u**)

(S)-3-(2-oxo-1-phenylcyclohexyl)propanal (4a)

(1R,5S)-5-phenylbicyclo[3.3.1]nonane-2,9-dione (5a)

(4a*S*,8a*S*)-4a-phenyloctahydro-2H-chromen-2-one (**6a**)

(3a*S*,7a*S*)-3a-phenyloctahydro-1H-indole (8a)

