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I. ALIGNMENT OF FIBERS

The alignment of the fibers is checked with a phase contrast microscope. Gross fiber

misalignments are easily detectable because trapping is not possible anymore. Interest-

ingly, at small fiber distance, the misalignment can result in a square vesicle as shown

in figure S1. This ”square” shape clearly shows vesicles are soft objects characterized

by a low tension of the vesicle membrane as typical optical forces are only of the order

of 10-100 pN. Such misalignment is not desirable in the present context, but might be

interesting for vesicle shaping and encapsulation strategies.

FIG S1: Fiber misalignment observed with a phase contrast microscope. White arrows indicate

the fibers axis. The misalignement results here in a square deformation of the vesicle.

II. OPTICAL STRESS

The optical stress was calculating using Ray optics (RO) approximation. The peak

stress (i.e. the maximum stress) from RO calculation is also given by the following for-

mula [1]:

σ0 =
nmed I

c
.(2− r + r2)(

nscat

nmed

− 1)

where nmed is the refractive index of the surrounding medium, nscat is the refractive

index of the scatterer (here a vesicle), r is the Fresnel reflexion coefficient for intensity

at normal incidence, I = 2P
πw2 is the laser beam intensity at the interface, P is the power

and w the beam waist at the interface of the vesicle along the beam axis. The peak

stress is dependent on w but is only very weakly dependent on the radius of the vesicle R

since the dependence in R only appears in the beam waist w. However, the optical stress

profile is highly dependent on R/w as shown in the polar plots in figure S2 for several
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FIG S2: (a-c): In blue: Optical stress profiles in polar coordinates for three ratio R/w : (a)

R/w = 0.3 (b) R/w = 0.8 (c) R/w = 1.4 calculated from RO in the case of an open setup with

a total power P = 1 W, beam waist at the vesicle center w = 9 µm, nmed = 1.355,

nvesicle = 1.37, λ = 808 nm. Stress is indicated in concentric rings in Pa. In red, the cos2

approximation (d): Comparison of the total stretching force projected along the fiber axis from

RO calculations and from cos2 approximation depending on the ratio R/w. Error bars indicate

confidence interval of 10%.

ratio R/w. The cos2 approximation can fit the optical stress profile relatively well for

R/w ∼ 0.9 whereas it tends to overestimate optical stress at high polar angle for high

R/w value (see R/w = 1.4) and underestimate at high polar angle for low R/w value (see

R/w = 0.3). Figure S2 also compares the total stretching force projected along the fiber

axis calculated from RO and from the cos2 approximation. It can be seen that the cos2

approximation gives relatively correct results for an important range of ratio R/w which

could explain the good agreement between the proposed deformation model for vesicles

and experimental data. However some discrepancies exist at high R/w ratio which could

explain the scattered values obtained for bending modulus.

A. Deformation of a vesicle in the optical stretcher

We analyze the deformation of a vesicle according to the quasi-spherical approach

described in [5, 6]. In this approach, the shape of the vesicle is parametrized in spherical

harmonics as
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R(θ, φ) = R

(

1 +
lmax
∑

l≥0

l
∑

m=−l

ulmYlm(θ, φ)

)

, (1)

where Ylm(θ, φ) are the normalized spherical harmonic functions and ulm their associated

amplitudes. The radius of the vesicle R is given by the constant volume of the vesicle as

V = 4πR3

3
. We assume that the total area A of the vesicle is fixed and can be expressed

by A = (4π + ∆)R2 where ∆ is the dimensionless excess area related to the difference

between apparent area and true area. By expanding the geometrical quantities (volume

and area) around a sphere, it is straightforward to obtain [6]

u00 = −
lmax
∑

l≥1

l
∑

m=−l

|ulm|2/
√
4π, (2)

and
lmax
∑

l≥1

l
∑

m=−l

|ulm|2
(l + 2)(l − 1)

2
= ∆, (3)

expressing the volume and area constraints respectively. The upper cutoff lmax is of order

R/d where d is the membrane thickness. For a vesicle with R ≃ 10 − 50µm, lmax is of

order 104.

The energy induced by the optical trap is taken into account in the total free energy of

the vesicle. The shape of the vesicle results then from the minimization of the free energy.

The total free energy is the sum of three terms : the bending energy Fκ, a surface energy

FΣ and the stretching energy Fs as

F = Fκ + Fs + FΣ. (4)

Bending energy can be expressed by

Fκ = κ[8π +
1

2

∑

l,m

|ulm|2(l + 2)(l + 1)l(l − 1) +O(u3

lm)], (5)

where κ is the bending rigidity.

The area constraint (3) is taken into account as an area energy such that

FΣ = Σ

∮

dA, (6)

where the effective tension Σ of the vesicle is the Lagrangian multiplier associated with

the area. We define a dimensionless tension γ̃ by γ̃ ≡ Σ R2/κ.

To model the stretching energy, it is convenient to use the analytical approximation

suggested by Wottawah et al. [7] where the stress is approximated by σ(θ) = σ0 cos
2(θ).

The calculation below can be extended to other analytical functions for the stress as it

is always possible to decompose the stress distribution in spherical harmonics and do a
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similar development as below. Thus, in the case of σ = σ0 cos
2(θ), the stretching energy

is

Fs = −σ0

∮

cos2 θ [R(θ, φ)−R]dA (7)

The stress distribution can be decomposed in spherical harmonics to give cos2(θ) =

[
√

16π/5 Y20 + 1]/3. So the stretching energy becomes

Fs = −(σ0R
3/3)[

√
4πu00 +

√

16π/5 u20]. (8)

We define a dimensionless stress parameter such as f̃ = 2σ0R3

3κ
. This leads to the expression

of the total free energy

F =
κ

2

∑

l,m

El|ulm|2 − κf̃
√

4π/5u20, (9)

with

El = (l + 2)(l − 1)[l(l + 1) + γ̃ + f̃/(l + 2)(l − 1)]. (10)

The mean shape of vesicles in the optical stretcher now follows from this energy as there

is only one mode with a non-zero mean amplitude which is the elliptical one,

ū20 =

√

4π/5 f̃

24 + 4γ̃ + f̃
, (11)

where the bar on any parameter indicates the change due to the optical stretcher relative

to the spherical case. Experimentally, ū20 is directly related by equation (1) to the relative

major and minor axis strains, ∆M and ∆m, respectively, by

ū20 =
2

3

√

4π

5

(

∆M

R
− ∆m

R

)

. (12)

The area stored in the elliptical mode is, from equations (3) and (11)

∆̄ = 2ū2

20
= 2

(4π/5)f̃ 2

(24 + 4γ̃ + f̃)2
. (13)

The area stored in the fluctuations becomes

∆fl =
kT

2κ

∑

l,m

(l + 2)(l − 1)

El

=
kT

2κ

∑

l≥2

2l + 1

l(l + 1) + γ̃ + f̃/(l + 2)(l − 1)
(14)

=
kT

2κ

5

6 + γ̃ + f̃/4
+

kT

2κ

∑

l≥3

2l + 1

l(l + 1) + γ̃ + f̃/(l + 2)(l − 1)
. (15)

The total area constraint reads then

∆ = ∆̄ + ∆fl. (16)

This equation is the general equation to calculate the dependence of the effective tension

γ̃ = γ̃(∆, κ, f̃ , lmax) and to deduce the vesicle shape in the optical stretcher.
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For vanishing laser amplitude (f̃ = 0) the dimensionless initial effective tension γ̃0 =
Σ0.R2

κ
(resp. the initial effective tension Σ0) can be derived analytically from equations

(15), and (16) as follows in three regimes [5]

(i)Tense regime: For ∆ << kT/2κ, one obtains

γ̃0 ≈
kT

2κ∆
l2max. (17)

For bending moduli between 1−100 kT , this corresponds to dimensionless initial effective

tension γ̃0 >> 108 which gives for a typical radius of 10 µm: Σ0 >> 10−3 N/m. In this

regime, all N modes share the available excess area [5].

(ii) Entropic regime: For kT/2κ << ∆ << (kT/κ) ln lmax, the tension depends expo-

nentially on the excess area

γ̃0 ≈ l2maxe
−2κ∆/kT . (18)

This regime corresponds to effective tension between 10−7 << Σ0 << 10−3 N/m for

κ ≈ 1− 100 kT and R ≈ 10 µm.

(iii) Prolate regime: For (kT/κ) ln l2max << ∆ ≤ 1, most of the excess area is stored in

the (l = 2)-modes. The tension approaches the limiting value −6:

γ̃0 ≈ −6 +
5

2

kT

κ∆
. (19)

This regime is associated with negative tension indicating that fluctuations are pro-

moted [6].

For non-vanishing laser amplitude, numerical calculations are necessary to solve the

area constraint (eq. (16)) when κ, ∆, f̃ and lmax ≈ 104 are known [5]. However below, we

approximate this equation in some limiting cases in order to discuss the general behavior.

1. Low peak-stress regime (σ0R << 6Σ)

For low laser power, the applied stress is weak and the tension term is dominant if

4γ̃ >> f̃ in equations (11,13). This condition is fulfilled in our experiment at small power

(see experimental part).

In the low peak stress regime, we can then obtain a simple expression for the deforma-

tion ū20

ū20 ≈
√

4π/5 f̃

24 + 4γ̃
, (20)

where γ̃ is the effective tension of the vesicle that depends implicitly on the stress but

should be close to the initial tension γ̃0 as calculated above.

Finally, the mean shape of the vesicle in the optical stretcher is given by

〈R(θ, φ)〉 = R̃ +R ū20Y20, (21)
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where R̃ = R(1 + 〈u0,0〉/
√
4π).

Considering that in first order, R̃ ≈ R̃(0) +B.f̃ , the mean shape of the vesicle in first

order becomes

〈R(θ, φ)〉 ≈ R̃(0) + [B +
R

24 + 4γ̃
(3 cos2 θ − 1)/2]f̃ , (22)

where R̃(0) is the mean radius at zero optical stress and B is a term independent of f̃ .

To take into account the total area constraint (eq. 16), we simplify area expressions

using the low peak stress approximation. For 4γ̃ >> f̃ , the stress term can be neglected

in eq. (15) to give

∆fl =
kT

2κ

5

6 + γ̃
+

kT

2κ

∑

l≥3

2l + 1

l(l + 1) + γ̃
. (23)

Replacing the last term by an integral, we obtain after simplification in the case of the

entropic regime which corresponds to the regime investigated experimentally

∆̄ =
kT

2κ
ln

(

Σ

Σ0

)

=
kT

2κ
ln

(

γ̃

γ̃0

)

, (24)

where Σ0 and Σ are the vesicle effective tension (in N/m) for the initial spherical case

and the deformed case. This relation is similar to the one developed in [2].

However, the effective tension cannot be rigorously determined by the law of Laplace

as presented for the liquid drop model, since fluctuations and bending rigidity modify

it [9]. By combining equations (13) and (24), we can eliminate the effective tension of the

vesicle in equation (20) and obtain a relation between ū20 and the peak stress σ0 within

this approximation

σ0 =

√

5

4π
ū20

(

36κ

R3
+

6Σ0

R
exp

(

4κū2
20

kT

))

, (25)

where the fitting parameters are κ and Σ0, respectively the bending modulus and the

effective initial tension of the vesicle. Equation (25) is the standard equation that will

be tested where ū20 is evaluated experimentally (with eq. 12) and the peak stress σ0

calculated numerically from experimental parameters.

2. High peak-stress regime

When the stress is increased and becomes large enough (f̃ → ∞), all the excess area

is stored in the elliptical mode l = 2. The tension in the vesicle, which depends on the

applied stress, is also increased. With ∆ = ∆̄ = 2ū2
20

we can estimate the tension from

equation (13) to find
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γ̃ ≈ (
√

8π/5∆ − 1)f̃/4. (26)

So in the high peak-stress regime, the effective tension of the vesicle is expected to depend

linearly on the peak-stress.

The cross-over between the ’low peak stress’ regime and the ’high peak stress’ regime

is expected to start at a critical stress σc defined by

σc ≈
6Σ0

R (
√

8π
5∆

− 1)
, (27)

where the initial tension Σ0 can be expressed depending on the tension regime (tense,

entropic or prolate). Above a critical stress σc, the deformation of the vesicle is expected

to saturate with ū20 →
√

∆

2
as long as the quasispherical approach is still appropriate.

Indeed, in the high peak stress regime, stronger deformations could take place and further

effects such as stretching of the membrane might arise which are not studied here.

III. TEMPERATURE IN THE OS: SIMULATION

Wavelength (nm) 808 1064 1480

Absorption coefficient (cm−1) 0.019 0.1458 23.2394

∆T (Ñ) for 1 W total power 2.3 15.9 2092.3

Penetration length ≈ 52 cm ≈ 6.9 cm 430 µm

Table S3: Absorption coefficients, penetration lengths and maximum temperature increase in

the setup for 1W of total laser power for the various wavelengths used in this work using

thermodynamic coefficients of water at 20Ñ.

To confirm the estimates of temperature increase with different wavelengths, we com-

puted the increase in temperature inside the setup using COMSOL software (COMSOL

MultiPhysics) for the three wavelengths used in our study. A typical temperature dia-

gram is presented in figure S4a where a sketch of the temperature distribution is depicted

inside the glass capillary. The calculated increases in temperature are in agreement with

previous published results [3] and estimates are summarized in Table S3. In figure S4b,

the temperature increase at the center of the trap rescaled by the maximum temperature

increase (given in table S3) is presented as a function of the distance d between the fiber

and the center of the trap for the case of the open setup (fiber ends are in water). As

the penetration length in water is inversely proportional to the absorption coefficient, the

increase in temperature at the center of the trap for 1480 nm laser can be tuned by chang-
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FIG S4: Simulations of temperature increase inside an optical stretcher for different

wavelengths. a) Distribution of the temperature inside a microfluidic optical stretcher according

to a COMSOL simulation. b) Renormalized increase in temperature ∆T/∆Tmax as a function

of the distance between the fiber ends and at the center of the trap for an open setup (fiber ends

are in water). ∆Tmax is given in Table S3.

ing fiber distance (figure S4b), which is not the case at 808 nm and 1064 nm because

penetration lengths are much higher than the size of the microfluidic channel.

IV. DEFORMATION OF DPPC AND DSPC VESICLES WITH A COMBINED

1064/1480 OPTICAL STRETCHER

This figure shows the deformation of DPPC or DSPC vesicles as a function of the 1064

nm total power and 1480 nm total power for about thirty DPPC and DSPC vesicles. The

smallest circle corresponds to the absence of deformation (M = m = R). Then the bigger

the circle is the higher the deformation is. Two transitions lines have been added to

enhance a transition between a regime where the deformation is very small and a regime

where the deformation is important as explained in the main text.
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